我的Google Vertex AI实践经验分享

简介: 忙碌的开发者分享了使用Google Vertex AI的实践经验。从复杂的初始设置到微调模型时的手动资源分配,作者经历了种种挑战,包括高昂的成本与不足的文档支持。尽管如此,Vertex AI在图像识别和自然语言处理方面展现出强大能力。作者希望反馈能帮助Google改进服务,使之更加用户友好。

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/a3597a3f8e194aa8a2edb75cdd8da943.gif#pic_center)

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/46c3ffad26574496b67d17b189a4cb4f.png#pic_center)


# 我的Google Vertex AI实践经验分享


## 前言

作为一名忙碌的开发者,我时常希望能减少睡眠时间以完成更多工作。在这个过程中,我尝试了多种方法,并设计了多个概念验证项目。本文分享了我在使用Google的生成式AI服务Vertex AI时的实践经验。需要注意的是,市场在快速发展,文中提到的一些问题可能在你阅读时已得到改善。


## 基础设置

在使用GCP控制台时,我发现它比七年前复杂了许多。然而,Vertex AI的初始设置相对简单。登录GCP控制台,点击左上角的导航菜单,展开“更多产品”,并在“人工智能”菜单下选择Vertex AI。


在设置过程中,我遇到了一个问题:由于未启用所有推荐的API,设置微调任务时点击“开始微调”按钮后没有任何反应。解决方法是确保点击“启用所有推荐的API”按钮。


## 微调模型

成功执行微调任务花费了我一周时间。主要原因是GCP要求用户手动分配硬件资源配额,这对于没有运维背景的用户来说非常困难。我多次尝试设置硬件配额,最终在论坛求助并未得到答复后,自行摸索解决了问题。


微调任务失败的原因在于缺少硬件资源配额。GCP不提供默认硬件配额,用户需要手动申请。我申请了GPU和TPU的配额,但由于缺乏文档支持,我不知道需要申请多少单位。最终,我花费了86美元进行微调,训练数据集仅包含200行文本,总共35KB的数据。


## API使用

在测试过程中,我发现Vertex AI的API使用需要OAuth认证,这对于不熟悉Web开发的用户来说非常不便。我创建了一个服务账户,并生成了包含所有必要信息的密钥文件,延长了认证生命周期至12小时。然而,依然缺乏实用的REST示例指导如何设置这些请求。


Vertex AI的JSON格式与OpenAI的JSON格式非常相似,主要区别在于Vertex AI将上下文作为单独的节点设置在消息数组旁边。尽管如此,我发现微调后的模型在回答训练数据中的问题时表现不佳,与预期相差甚远。


## 使用体验

在实际使用过程中,我发现在设置和使用Vertex AI时遇到了许多挑战。例如,当试图进行模型微调时,经常遇到硬件资源不足的问题。每次设置新的微调任务时,都需要手动调整和分配资源配额,这不仅耗时,还增加了出错的可能性。此外,Vertex AI的用户界面虽然功能强大,但对于初次使用者来说并不直观,需要花费时间去适应。


尽管如此,Vertex AI在处理复杂任务时表现出了强大的能力。特别是在图像识别和自然语言处理领域,其模型的精度和速度都非常令人满意。在一次项目中,我使用Vertex AI对大量图像数据进行了分类,结果不仅准确,而且处理速度非常快,这大大提高了项目的效率。


## 总结

尽管本文看似对Vertex AI充满抱怨,但我的目的是提供建设性的反馈。目前,我认为Vertex AI尚未准备好商业化使用。服务设置复杂,微调难以满足特定需求。这种复杂性可能会劝退只想“完成任务”的客户。


相比之下,Azure的OpenAI服务设置更简单,无需OAuth认证,也不需要手动分配硬件资源。我希望本文能帮助Google改进其产品,使其更易于使用。


希望通过这篇文章,能够为其他开发者提供一些参考,帮助他们更好地理解和使用Vertex AI。同时,也期待Google能够不断优化和改进这项服务,让更多的人能够受益于这项强大的技术。


## 示例代码


以下是一个简单的示例代码,展示了如何使用Vertex AI进行文本生成:


```python

import vertexai

from google.auth import credentials


# 设置认证

credentials = credentials.Credentials.from_service_account_file('path/to/your/service-account-key.json')

vertexai.init(credentials=credentials)


# 初始化Vertex AI客户端

client = vertexai.TextGenerationClient()


# 定义输入参数

input_text = "Your prompt here"

response = client.generate(input_text)


# 输出结果

print(response.generated_text)

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/f32bbbe1e79349729ed36d14f480e334.png#pic_center)

目录
相关文章
|
14天前
|
消息中间件 人工智能 运维
12月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
1129 71
|
2月前
|
人工智能 Serverless
AI 大模型助力客户对话分析 ——实践操作
参与《AI大模型助力客户对话分析》项目,基于阿里云社区操作路书,从架构设计到部署测试,逐步学习并应用大模型进行AI质检。过程中虽有控制台跳转等小挑战,但整体体验流畅,展示了AI技术的便捷与魅力,以及阿里云平台的先进性和社区支持。最终实现的AI质检功能,能够有效提升企业客户服务质量与效率。
62 0
|
3天前
|
人工智能 自然语言处理 算法
主动式智能导购 AI 助手解决方案实践与测评
主动式智能导购 AI 助手解决方案实践与测评
|
4天前
|
人工智能 Serverless API
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
38 12
|
4天前
|
存储 人工智能 开发工具
AI场景下的对象存储OSS数据管理实践
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
34 10
|
4天前
|
弹性计算 人工智能 数据管理
AI场景下的对象存储OSS数据管理实践
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
40 10
|
1天前
|
人工智能 Serverless 视频直播
活动实践 | AI智能体实时语音互动
AI智能体实时语音互动方案提供端到端的实时音频交互,用户通过终端SDK与云端AI智能体进行音频通话。AI智能体接收音频输入,依据预定义工作流处理并生成响应,通过ARTC网络推送结果。该方案支持灵活编排AI组件如语音转文字、大语言模型等,确保高可用、低延迟的通信体验。用户可轻松创建和管理智能体及实时工作流,实现高效对话,并可通过示例网站体验功能。
|
11天前
|
机器学习/深度学习 人工智能 监控
AI视频监控技术的核心优势与实践
AI视频监控技术结合了计算机视觉、深度学习和大数据分析,能够实时分析监控画面,识别异常行为和场景变化。其核心在于从“被动记录”转型为“主动识别”,提升监控效率并减少安全隐患。主要应用场景包括泳池管理、健身器械区域、人员密度预警和异常事件检测。系统架构支持多种摄像头设备,采用边缘计算和Docker部署,具备实时性、高准确率和扩展性等优势。未来将优化复杂场景适应性和实时计算负载,进一步提高系统性能。
|
13天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
18天前
|
人工智能
带上团队一起来做 AI 编程实践丨通义灵码联合TGO鲲鹏会开启 AI 大课
带上团队一起来做 AI 编程实践丨通义灵码联合TGO鲲鹏会开启 AI 大课

热门文章

最新文章