有关一次FullGC的故障排查

本文涉及的产品
Serverless 应用引擎 SAE,800核*时 1600GiB*时
函数计算FC,每月15万CU 3个月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 在收到容器CPU使用率达到104%的告警后,通过日志发现多个线程正在进行批处理任务。初步怀疑Full GC导致CPU占用过高,但内存使用率仅为62%,不符合预期。进一步排查发现监控指标与实际情况不符,最终确认是由于JVM Full GC引起的CPU激增。通过分析堆内存快照,定位到四个大型`List<Map<String, String>>`对象占用了近900MB内存,这些对象由用户上传的Excel转换而来,导致内存膨胀。这些大对象在JVM中长时间驻留,容易触发Full GC。为解决此问题,提出了两种方案:1. 将数据存储于缓存而非JVM内存中;2. 减少内存中对象的数据量,如删除无用字

一、问题发现与排查

1.1 找到问题原因

问题起因是我们收到了jdos的容器CPU告警,CPU使用率已经达到104%

image.png

观察该机器日志发现,此时有很多线程在执行跑批任务。正常来说,跑批任务是低CPU高内存型,所以此时考虑是FullGC引起的大量CPU占用(之前有类似情况,告知用户后重启应用后解决问题)。

通过泰山查看该机器内存使用情况:

image.png

可以看到CPU确实使用率偏高,但是内存使用率并不高,只有62%,属于正常范围内。

到这里其实就有点迷惑了,按道理来说此时内存应该已经打满才对。

后面根据其他指标,例如流量的突然进入也怀疑过是jsf接口被突然大量调用导致的cpu占满,所以内存使用率不高,不过后面都慢慢排除了。其实在这里就有点一筹莫展了,现象与猜测不符,只有CPU增长而没有内存增长,那么什么原因会导致单方面CPU增长?然后又朝这个方向排查了半天也都被否定了。

后面突然意识到,会不会是监控有“问题”?

换句话说应该是我们看到的监控有问题,这里的监控是机器的监控,而不是JVM的监控!

JVM的使用的CPU是在机器上能体现出来的,而JVM的堆内存高额使用之后在机器上体现的并不是很明显。

遂去sgm查看对应节点的jvm相关情况:

可以看到我们的堆内存老年代确实有过被打满然后又清理后的情况,查看此时的CPU使用情况也可以与GC时间对应上。

那么此时可以确定,是Full GC引起的问题。

1.2 找到FULL GC的原因

我们首先dump出了gc前后的堆内存快照,

然后使用JPofiler进行内存分析。(JProfiler是一款堆内存分析工具,可以直接连接线上jvm实时查看相关信息,也可以分析dump出来的堆内存快照,对某一时刻的堆内存情况进行分析)

首先将我们dump出来的文件解压,修改后缀名.bin,然后打开即可。(我们使用行云上自带的dump小工具,也可以自己去机器上通过命令手工dump文件)

首先选择Biggest Objects,查看当时堆内存中最大的几个对象。

从图中可以看出,四个List对象就占据了近900MB的内存,而我们刚刚看到堆内存最大也只有1.3GB,因此再加上其他的对象,很容易就会把老年代占满引发full gc的问题。

选择其中一个最大的对象作为我们要查看的对象

这个时候我们已经可以定位到对应的大内存对象对应的位置:

其实至此我们已经能够大概定位出问题所在,如果还是不确定的话,可以查看具体的对象信息,方法如下:

可以看到我们的大List对象,其实内部是很多个Map对象,而每个Map对象中又有很多键值对。

在这里也可以看到Map中的相关属性信息。

也可以在以下界面直接看到相关信息:

然后一路点下去就可以看到对应的属性。

至此,我们理论上已经找到了大对象在代码中的位置。

二、问题解决

2.1 找到大对象在代码中的位置与问题的根本原因

首先我们根据上述过程找到对应位置与逻辑

我们的项目中大概逻辑是这样的:

  1. 首先会解析用户上传的Excel样本,并将其加载到内存中作为一个List变量,即我们上述看到的变量。一个20w的样本,此时字段数量有a个,大概占用空间100mb左右。
  2. 然后遍历循环用户样本,根据用户样本中的数据,再增加一些额外的请求数据,根据此数据请求相关结果。此时字段数量有a+n个,占用空间已经在200mb左右。
  3. 循环完成后将此200mb的数据存入缓存。
  4. 开始生成excel,将200mb数据从缓存中取出,并根据之前记录的a个字段,取出初始的样本字段填充至excel。

用流程图表示为:

结合一些具体排查问题的图片:

其中一个现象是每次gc后的最小内存正在逐步变大,对应上述步骤中第二步,内存正在逐步膨胀。

结论

将用户上传的excel样本加载到内存中,并将其作为一个List<Map<String, String>>的结构存储起来,首先一个20mb的excel文件以此方式存储会膨胀占用120mb左右堆内存,此步骤会大量占用堆内存,并且因为任务逻辑原因,该大对象内存会在jvm中存在长达4-12小时之久,导致一但任务过多,jvm堆内存很容易被打满。

这里列举了为什么使用HashMap会导致内存膨胀,其主要原因是存储空间效率比较低:

一个Long对象占内存计算:在HashMap<Long,Long>结构中,只有Key和Value所存放的两个长整型数据是有效数据,共16字节(2×8字节)。这两个长整型数据包装成java.lang.Long对象之后,就分别具有8字节的MarkWord、8字节的Klass指针,再加8字节存储数据的long值(一个包装对象占24字节)。

然后这2个Long对象组成Map.Entry之后,又多了16字节的对象头(8字节MarkWord+8字节Klass指针=16字节),然后一个8字节的next字段和4字节的int型的hash字段(8字节next指针+4字节hash字段+4字节填充=16字节),为了对齐,还必须添加4字节的空白填充,最后还有HashMap中对这个Entry的8字节的引用,这样增加两个长整型数字,实际耗费的内存为(Long(24byte)×2)+Entry(32byte)+HashMapRef(8byte)=88byte,空间效率为有效数据除以全部内存空间,即16字节/88字节=18%。

——《深入理解Java虚拟机》5.2.6

以下是刚上传的excel中dump出的堆内存对象,其占用的内存达到了128mb,而上传的excel实际只有17.11mb。

空间效率17.1mb/128mb≈13.4%

2.2 如何解决此问题

暂且不讨论上述流程是否合理,解决办法一般可以分为两类,一类是治本,即不把该对象放入jvm内存中,转而存入缓存中,不在内存中则大对象问题自然迎刃而解。另一类是治标,即缩小该大内存对象,在日常使用场景下使其一般不会触发频繁的full gc问题。

两种方式各有优劣:

2.2.1 激进治疗:不把他存入内存

解决逻辑也很简单,例如在加载数据时,将其按照样本加载数据一条一条存入redis缓存,然后我们只需要知道样本中有多少的数量,按照数量的先后顺序从缓存中取出数据,即可解决该问题。

优点:可以从根本上解决此问题,以后基本上不会存在该问题,数据量再大只需要添加相应的redis资源即可。

缺点:首先会增加许多redis缓存空间消耗,其次从显示考虑对于我们项目来说,此处代码古老且晦涩难懂,改动需要较大工作量与回归测试。

2.2.2 保守治疗:缩减其数据量

分析2.1的上述流程,首先第三步是完全没必要的,先存入缓存再取出,额外占用缓存空间。(猜测系历史问题,此处不再深究)。

其次是在第二步中,多出来的字段n,在请求结束后该字段就已经无用了,因此可以考虑在请求结束后删除无用字段。

此时也有两种解决方案,一种是只删除无用字段缩减其map大小,然后将其作为参数传递给生成excel使用;另一种方式是请求完成直接删除该map,然后在生成excel时再重新读取用户上传的excel样本。

优点:改动较小,不需要太复杂的回归测试

缺点:在极端大数据量情况下,仍有可能出现full gc的情况

具体实现方式就不展开了。

其中一种实现方式

//获取有用的字段
String[] colEnNames = (String[]) colNameMap.get(Constant.BATCH_COL_EN_NAMES);
List<String> colList = Arrays.asList(colEnNames);
//去除无用的字段
param.keySet().removeIf(key -> !colList.contains(key));

三、拓展思考

首先本文中监控图是在复现当时场景时人为制造的gc常见。

在cpu使用率图中,大家可以观察到cpu使用率上升时间确实跟gc的时间相吻合,但是并没有出现当时场景中的104%的CPU使用率

其实直接原因比较简单,就是因为系统虽然出现了full gc,但是并没有频繁出现。

小范围低频率的full gc不太会引起系统的cpu飙升,这也是我们所看到的现象。

那么当时的场景是什么原因呢?

我们上文提到过,我们在堆内存中的大对象是会随着任务的进行逐步膨胀的,那么当我们的任务足够多,时间足够长,就有可能导致每次full gc后可用空间变得越来越小,当可用空间小到一定程度之后就,每次full gc完成之后发现空间还是不够使用,就会触发下一次的gc,从而导致最终结果的频繁发生gc,引起cpu频率的飙升不下。

四、问题排查总结

  • 当我们遇到线上cpu使用率过高的情况时,可以先查看是否是full gc引起的问题,注意要看的是jvm的监控,或者使用jstat相关命令查看。不要被机器内存监控所误导。
  • 如果确定是gc引起的问题,可以通过JProfiler直连线上jvm或者使用dump保存堆快照后离线分析。
  • 首先可以找到最大的对象,一般情况下是大对象引起的full gc。还有一种情况是,不像这么明显是四个大对象,也可能是比较均衡的十几个50mb的对象,具体情况还需要具体分析。
  • 通过上述工具找到确定有问题的对象后找到其堆栈对应的代码位置,通过代码分析找到问题的具体原因,通过其他现象推演猜测是否正确,进而找到问题的真正原因。
  • 根据问题的原因解决此问题。

当然,上述只是不算很复杂的排查情况,不同的系统肯定有不同的内存情况,我们应当具体问题具体分析,而从此次问题中可以学到的就是如果排查解决问题的思路。

相关文章
|
2月前
|
监控 Java 测试技术
JVM 性能调优 及 为什么要减少 Full GC
JVM 性能调优 及 为什么要减少 Full GC
72 4
WXM
|
2月前
|
存储 缓存 运维
一场FullGC故障排查
本文档详细记录了一次线上Java应用因频繁Full GC导致CPU使用率异常升高的问题排查与解决过程。
WXM
95 3
|
24天前
|
监控 JavaScript Java
JVM源码级别分析G1发生FullGC元凶的是什么
线上系统遭遇频繁Old GC问题,监控显示出现多次“to-space exhausted”日志,这表明垃圾回收过程中因年轻代 Survivor 区或老年代空间不足导致对象晋升失败。通过 JVM 源码分析,此问题源于对象转移至老年代失败时,JVM 无法找到足够的空间存放存活对象。进一步排查发现大对象分配占用了预留空间,加剧了空间不足的情况。使用 JFR 分析工具定位到定期报表序列化导致大量大对象生成,通过改用堆外内存进行序列化输出,最终解决了频繁 Old GC 问题。
|
3月前
|
Arthas 监控 Java
线上频繁fullgc问题-SpringActuator的坑
偷偷开启的监控在吃内存
60 0
|
缓存 监控 算法
因Full GC导致CPU飙升到100%问题排查记录
因Full GC导致CPU飙升到100%问题排查记录
305 0
|
Java
如何优化生产环境的Full GC?
大部分工程师开发完一个系统后,部署生产环境的时候往往不对JVM进行参数设置,直接用默认JVM参数,这绝对是系统负载逐渐增高的时最大问题 如你不设置-Xmx、-Xms之类的堆内存大小,你启动一个系统,可能默认就给你几百MB的堆内存大小,新生代和老年代可能都是几百M。
150 0
|
Arthas Prometheus 监控
排查GC问题常用的工具
最近杭州的花都陆陆续续开了。本来打算去太子湾看看郁金香,但到了地方才发现太子湾人满为患,无预约不能进。于是就在西湖边逛了逛,拍了点花花草草的照片。
762 0
|
监控 安全 Java
|
运维 监控 数据可视化
生产环境 OOM 与 GC 问题的处理思路
本篇内容记录了关于生产环境 OOM 与 GC 问题的处理思路 。
372 0
生产环境 OOM 与 GC 问题的处理思路
|
Java
程序刚启动,发生三次FullGc的问题追踪
程序刚启动,发生三次FullGc的问题追踪,原因定位到JVM的默认参数Metaspace初始值和最大值是需要设置
821 0
程序刚启动,发生三次FullGc的问题追踪