【Leetcode刷题Python】33. 搜索旋转排序数组

简介: 解决LeetCode "搜索旋转排序数组" 问题的Python实现代码。代码使用了二分查找算法,首先检查目标值是否存在于数组中,然后通过比较数组中间值与数组首尾值来确定应该在数组的哪一半继续搜索,直到找到目标值或搜索范围为空。如果找到目标值,返回其索引;如果搜索结束仍未找到,返回 -1。

1 题目

整数数组 nums 按升序排列,数组中的值 互不相同 。

在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [4,5,6,7,0,1,2], target = 0

输出:4

示例 2:

输入:nums = [4,5,6,7,0,1,2], target = 3

输出:-1

示例 3:

输入:nums = [1], target = 0

输出:-1

2 解析

二分查找的思想:

将数组一分为二,其中一定有一个是有序的,另一个可能是有序,也能是部分有序。

此时有序部分用二分法查找。无序部分再一分为二,其中一个一定有序,另一个可能有序,可能无序。就这样循环。

3 Python 实现

class Solution:
    def search(self, nums: List[int], target: int) -> int:
        l,r = 0,len(nums)-1
        if target not in nums:
            return -1
        while l<=r :
            mid  = int((l+r)/2)
            if nums[mid]==target:
                return mid
            # 注意边界条件,这里是<=
            # 有序在左边
            if nums[0]<=nums[mid]:
                if nums[0]<=target<nums[mid]:
                    r = mid-1
                else:
                    l = mid+1
            # 有序在右边
            else:
                if nums[mid]<target<=nums[-1]:
                    l = mid+1
                else:
                    r = mid-1
        return -1
目录
相关文章
|
1月前
|
缓存 供应链 监控
1688item_search_factory - 按关键字搜索工厂数据接口深度分析及 Python 实现
item_search_factory接口专为B2B电商供应链优化设计,支持通过关键词精准检索工厂信息,涵盖资质、产能、地理位置等核心数据,助力企业高效开发货源、分析产业集群与评估供应商。
|
1月前
|
JSON 监控 数据格式
1688 item_search_app 关键字搜索商品接口深度分析及 Python 实现
1688开放平台item_search_app接口专为移动端优化,支持关键词搜索、多维度筛选与排序,可获取商品详情及供应商信息,适用于货源采集、价格监控与竞品分析,助力采购决策。
|
2月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
1月前
|
缓存 供应链 监控
VVIC seller_search 排行榜搜索接口深度分析及 Python 实现
VVIC搜款网seller_search接口提供服装批发市场的商品及商家排行榜数据,涵盖热销榜、销量排名、类目趋势等,支持多维度筛选与数据分析,助力选品决策、竞品分析与市场预测,为服装供应链提供有力数据支撑。
|
28天前
|
缓存 监控 算法
唯品会item_search - 按关键字搜索 VIP 商品接口深度分析及 Python 实现
唯品会item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商数据分析、竞品监控与市场调研。结合Python可实现搜索、分析、可视化及数据导出,助力精准决策。
|
28天前
|
缓存 监控 算法
苏宁item_search - 按关键字搜索商品接口深度分析及 Python 实现
苏宁item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商分析、竞品监控等场景。具备多维度筛选、分页获取、数据丰富等特性,结合Python可实现搜索、分析与可视化,助力市场研究与决策。
|
2月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
503 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
1月前
|
Web App开发 缓存 监控
微店店铺商品搜索(item_search_shop)接口深度分析及 Python 实现
item_search_shop接口用于获取特定店铺的全部商品数据,支持批量获取商品列表、基础信息、价格、销量等,适用于竞品监控、商品归类及店铺分析等场景,助力全面了解店铺经营状况。
|
27天前
|
JSON 缓存 供应链
电子元件 item_search - 按关键字搜索商品接口深度分析及 Python 实现
本文深入解析电子元件item_search接口的设计逻辑与Python实现,涵盖参数化筛选、技术指标匹配、供应链属性过滤及替代型号推荐等核心功能,助力高效精准的电子元器件搜索与采购决策。
|
1月前
|
缓存 自然语言处理 算法
item_search - Lazada 按关键字搜索商品接口深度分析及 Python 实现
Lazada的item_search接口是关键词搜索商品的核心工具,支持多语言、多站点,可获取商品价格、销量、评分等数据,适用于市场调研与竞品分析。

推荐镜像

更多