JeecgBoot 低代码平台快速集成 Spring AI

简介: Spring 通过 Spring AI 项目正式启用了 AI(人工智能)生成提示功能。本文将带你了解如何在 Jeecg Boot 应用中集成生成式 AI,以及 Spring AI 如何与模型互动,包含 RAG 功能。

JeecgBoot 是一款基于代码生成器的低代码开发平台!前后端分离架构 SpringBoot2.x 和 3.x,SpringCloud,Ant Design Vue3,Mybatis-plus,Shiro,JWT,支持微服务。强大的代码生成器让前后端代码一键生成,实现低代码开发!JeecgBoot 引领新的低代码开发模式 (OnlineCoding-> 代码生成器 -> 手工 MERGE), 帮助解决 Java 项目 70% 的重复工作,让开发更多关注业务。既能快速提高效率,节省研发成本,同时又不失灵活性!

JeecgBoot 如何集成 Spring AI

Spring 通过 Spring AI 项目正式启用了 AI(人工智能)生成提示功能。本文将带你了解如何在 Jeecg Boot 应用中集成生成式 AI,以及 Spring AI 如何与模型互动,包含 RAG 功能。

(Retrieval Augmented Generation)检索增强生成(RAG)是一种用于将个人未经训练数据与人工智能模型集成的技术。在 RAG 工作流程中,第一步将文档数据加载到矢量数据库(例如 Redis)中。当收到用户查询时,矢量数据库会检索一组与该查询相似的文档。然后,这些文档数据充当用户问题的上下文,并与用户的查询结合使用生成响应(通常通过 LLM 模型)。

先来看一下最终效果,效果分别是 AI 互动以及 RAG 互动。

集成 Spring AI 在 Jeecg-module-demo 模块的 pom.xml 中,添加如下配置

<dependency>
  <groupid>org.springframework.ai</groupid>
  <artifactid>spring-ai-openai-spring-boot-starter</artifactid>
  <version>1.0.0-M1</version>
</dependency>
<repositories>
  <repository>
    <id>spring-milestones</id>
    <name>Spring Milestones</name>
    <url>https://repo.spring.io/milestone</url>
    <snapshots>
      <enabled>false</enabled>
    </snapshots>
  </repository>
  <repository>
    <id>spring-snapshots</id>
    <name>Spring Snapshots</name>
    <url>https://repo.spring.io/snapshot</url>
    <releases>
      <enabled>false</enabled>
    </releases>
  </repository>
</repositories>

添加配置 Spring AI 提供的 starter 自动配置完成了大部分工作,引入依赖后,只需要再进入如下配置即可

spring:
  ai:
    openai:
      api-key: open-ai-api-key
      base-url: 如非使用代理点,则无需更改

进行以上配置之后,官方默认没有提供 ChatClient 的 bean 注册,所以我们还需要最后一步,注册 ChatClient Bean。

@Bean
public ChatClient chatClient(ChatClient.Builder builder, VectorStore vectorStore) {
  return builder.build();
}

到这里,我们已经可以正常使用 ChatClient、ImageModel 等 API 与 OpenAI 进行互动访问了,如下:

文生文:

chatClient.prompt().user(message).call().content();

文生图:

imageModel.call(new ImagePrompt(description,
                        OpenAiImageOptions.builder().build()));

RAG:

// 向量库查询
List<document> documents = vectorStore.similaritySearch(query);
String info = "";
if (documents.size() &gt; 0) {
   info = documents.get(0).getContent();
}
// 构造系统prompt
String systemPrompt = "你的名字叫Jeecg AI助手,你的官网在http://jeecg.com,以友好的方式回应,乐于助人、快乐的态度";
// 构造用户prompt
String userPrompt = """
                给你提供一些数据参考: {info},请回答我的问题:{query}
                请你跟进数据参考与工具返回结果回复用户的请求。
                """;
// 构造提示词
Message systemMessage = new SystemMessage(systemPrompt);
PromptTemplate promptTemplate = new PromptTemplate(userPrompt);
Message userMessage = promptTemplate.createMessage(Map.of("info", info, "query", query));
Prompt prompt = new Prompt(List.of(userMessage, systemMessage));
client.prompt(prompt).stream().content();

与 JeecgBoot 集成

经过以上两段配置,已经可以正常与 Spring AI 支持的各个大模型进行 API 调用了,不过也仅仅是停留在代码层面,使用门槛也限制在开发员人层面。

JeecgBoot 在 3.7 版本提供了 AI 对话的页面,不过现在版本的默认实现并不是通过 Spring AI 进行集成的,但是却已经完成了前后端对话通信的框架,接下来只需要使用 Spring AI 替换掉原有的大模型交互即可。

org.jeecg.modules.demo.gpt.service.impl.ChatServiceImpl 这个类的 sendMessage 方法中,将如下代码进行注释,替换上 Spring AI 的 API 调用代码即可。如下

替换成

Flux<string> contents = client.prompt()
                        .user(message)
                        .stream().content().then(“DONE”);
final String id = topicId;
        contents.subscribe(p -&gt; {
            Map<string, string> result = new HashMap&lt;&gt;();
            result.put("content", p);
            try {
                if ("DONE".equals("p")) {
                    sseEmitter.send(SseEmitter.event().id("DONE").data(p), MediaType.TEXT_EVENT_STREAM);
                } else {
                    sseEmitter.send(SseEmitter.event()
                            .id(id)
                            .data(result)
                            .reconnectTime(3000));
                }
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        });

最终效果如开头所示,如果需要将对话替换成 RAG 对话,只需要将 chatClient 调用更换即可。

目录
相关文章
|
12天前
|
存储 人工智能 Serverless
AI 短剧遇上函数计算,一键搭建内容创意平台
为了帮助更多内容创作者和企业快速实现 AI 短剧创作,函数计算 FC 联合百炼联合推出“AI 剧本生成与动画创作解决方案”,通过函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 生图平台,实现从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。创作者只需通过简单操作,就能快速生成高质量的剧本,并一键转化为精美的动画。
|
1月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
6天前
|
人工智能 自然语言处理 Java
Spring AI,搭建个人AI助手
本期主要是实操性内容,聊聊AI大模型,并使用Spring AI搭建属于自己的AI助手、知识库。本期所需的演示源码笔者托管在Gitee上(https://gitee.com/catoncloud/spring-ai-demo),读者朋友可自行查阅。
123 36
Spring AI,搭建个人AI助手
|
14天前
|
NoSQL 大数据 关系型数据库
AllData数据中台核心菜单十一:数据集成平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
AllData数据中台核心菜单十一:数据集成平台
|
13天前
|
人工智能 自然语言处理 API
百聆:集成Deepseek API及语音技术的开源AI语音对话助手,实时交互延迟低至800ms
百聆是一款开源的AI语音对话助手,结合ASR、VAD、LLM和TTS技术,提供低延迟、高质量的语音对话体验,适用于边缘设备和低资源环境。
306 4
百聆:集成Deepseek API及语音技术的开源AI语音对话助手,实时交互延迟低至800ms
|
21天前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
150 21
|
2月前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
139 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
1月前
|
人工智能 JSON 安全
DeepSeek Engineer:集成 DeepSeek API 的开源 AI 编程助手,支持文件读取、编辑并生成结构化响应
DeepSeek Engineer 是一款开源AI编程助手,通过命令行界面处理用户对话并生成结构化JSON,支持文件操作和代码生成。
387 5
DeepSeek Engineer:集成 DeepSeek API 的开源 AI 编程助手,支持文件读取、编辑并生成结构化响应
|
21天前
|
缓存 安全 Java
Spring Boot 3 集成 Spring Security + JWT
本文详细介绍了如何使用Spring Boot 3和Spring Security集成JWT,实现前后端分离的安全认证概述了从入门到引入数据库,再到使用JWT的完整流程。列举了项目中用到的关键依赖,如MyBatis-Plus、Hutool等。简要提及了系统配置表、部门表、字典表等表结构。使用Hutool-jwt工具类进行JWT校验。配置忽略路径、禁用CSRF、添加JWT校验过滤器等。实现登录接口,返回token等信息。
204 12
|
20天前
|
人工智能 安全 Dubbo
Spring AI 智能体通过 MCP 集成本地文件数据
MCP 作为一款开放协议,直接规范了应用程序如何向 LLM 提供上下文。MCP 就像是面向 AI 应用程序的 USB-C 端口,正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一个将 AI 模型连接到不同数据源和工具的标准化方法。