承接上文,本节以ICMP和TCP为例介绍与网络相关的部分内容。
目录
Icmp的探测
首先看下促使我学习bcc的这篇文章中的程序traceicmpsoftirq.py,使用该程序的本意是找出对ping响应的进程位于哪个CPU core上,然后使用perf
扫描该core,找出造成网络延迟的原因。源码如下:
#!/usr/bin/python bpf_text = """ #include <linux/ptrace.h> #include <linux/sched.h> /* For TASK_COMM_LEN */ #include <linux/icmp.h> #include <linux/netdevice.h> struct probe_icmp_data_t { u64 timestamp_ns; u32 tgid; u32 pid; char comm[TASK_COMM_LEN]; int v0; }; BPF_PERF_OUTPUT(probe_icmp_events); static inline unsigned char *my_skb_transport_header(const struct sk_buff *skb) { return skb->head + skb->transport_header; } static inline struct icmphdr *my_icmp_hdr(const struct sk_buff *skb) { return (struct icmphdr *)my_skb_transport_header(skb); } int probe_icmp(struct pt_regs *ctx, struct sk_buff *skb) { u64 __pid_tgid = bpf_get_current_pid_tgid(); u32 __tgid = __pid_tgid >> 32; u32 __pid = __pid_tgid; // implicit cast to u32 for bottom half struct probe_icmp_data_t __data = {0}; __data.timestamp_ns = bpf_ktime_get_ns(); __data.tgid = __tgid; __data.pid = __pid; bpf_get_current_comm(&__data.comm, sizeof(__data.comm)); __be16 seq; bpf_probe_read_kernel(&seq, sizeof(seq), &my_icmp_hdr(skb)->un.echo.sequence); __data.v0 = (int)seq; probe_icmp_events.perf_submit(ctx, &__data, sizeof(__data)); return 0; } """ from bcc import BPF import ctypes as ct class Data_icmp(ct.Structure): _fields_ = [ ("timestamp_ns", ct.c_ulonglong), ("tgid", ct.c_uint), ("pid", ct.c_uint), ("comm", ct.c_char * 16), # TASK_COMM_LEN ('v0', ct.c_uint), ] b = BPF(text=bpf_text) def print_icmp_event(cpu, data, size): #event = b["probe_icmp_events"].event(data) event = ct.cast(data, ct.POINTER(Data_icmp)).contents print("%-7d %-7d %-15s %s" % (event.tgid, event.pid, event.comm.decode('utf-8', 'replace'), event.v0)) b.attach_kprobe(event="icmp_echo", fn_name="probe_icmp") b["probe_icmp_events"].open_perf_buffer(print_icmp_event) while 1: try: b.kprobe_poll() except KeyboardInterrupt: exit()
上面程序对icmp_echo
内核函数进行打点探测,当内核运行该函数时会执行自定义的函数probe_icmp
,并获取当前的tgid,pid以及icmp报文的序列号。
内容如下:
my_skb_transport_header
:该函数通过偏移sk_buff指针获取传输层首部地址,用于后续获取icmp首部的序列号。此处的操作可以直接参考static bool icmp_echo(struct sk_buff *skb)
的内核源码,其获取icmp首部的方式依次为:
static inline struct icmphdr *icmp_hdr(const struct sk_buff *skb) { return (struct icmphdr *)skb_transport_header(skb); } static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { return skb->head + skb->transport_header; }
- 可以看到
skb_transport_header
的处理与本程序的方式是一样的,将该函数的实现直接移植过去即可。需要注意的是,不能直接调用内核函数skb_transport_header
获取transport_header
的地址。 bpf_get_current_pid_tgid()
:获取当前的PID。需要注意的是该函数获取的是当前CPU上运行的进程ID,而不是某一个特定的进程ID。其内核源码如下:
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) { struct cgroup *cgrp = task_dfl_cgroup(current); struct cgroup *ancestor; ancestor = cgroup_ancestor(cgrp, ancestor_level); if (!ancestor) return 0; return cgroup_id(ancestor); }
#define current get_current()
- 因此以本程序为例,如果对icmp_echo的打点采集中如果发生了上下文切换,可能
bpf_get_current_pid_tgid
获取到的可能是切换后的程序。本文也是借助这种机制,发现在切换到cadvisor
导致了网络延时。 bpf_probe_read_kernel
:读取内核结构体的成员,原文中使用的是bpf_probe_read
,更多参见issue。
其余部分与检测可观测性相同。
TCP的探测
下面看一下TCP的探测,用于跟踪内核代码tcp_v4_connect
或tcp_v6_connect
,代码源自官方库tools/tcpconnect
#!/usr/bin/python from __future__ import print_function from bcc import BPF from bcc.containers import filter_by_containers from bcc.utils import printb import argparse from socket import inet_ntop, ntohs, AF_INET, AF_INET6 from struct import pack from time import sleep # arguments examples = """examples: ./tcpconnect # trace all TCP connect()s ./tcpconnect -t # include timestamps ./tcpconnect -p 181 # only trace PID 181 ./tcpconnect -P 80 # only trace port 80 ./tcpconnect -P 80,81 # only trace port 80 and 81 ./tcpconnect -U # include UID ./tcpconnect -u 1000 # only trace UID 1000 ./tcpconnect -c # count connects per src ip and dest ip/port ./tcpconnect --cgroupmap mappath # only trace cgroups in this BPF map ./tcpconnect --mntnsmap mappath # only trace mount namespaces in the map """ parser = argparse.ArgumentParser( description="Trace TCP connects", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-t", "--timestamp", action="store_true", help="include timestamp on output") parser.add_argument("-p", "--pid", help="trace this PID only") parser.add_argument("-P", "--port", help="comma-separated list of destination ports to trace.") parser.add_argument("-U", "--print-uid", action="store_true", help="include UID on output") parser.add_argument("-u", "--uid", help="trace this UID only") parser.add_argument("-c", "--count", action="store_true", help="count connects per src ip and dest ip/port") parser.add_argument("--cgroupmap", help="trace cgroups in this BPF map only") parser.add_argument("--mntnsmap", help="trace mount namespaces in this BPF map only") parser.add_argument("--ebpf", action="store_true", help=argparse.SUPPRESS) args = parser.parse_args() #解析入参 debug = 0 # define BPF program bpf_text = """ #include <uapi/linux/ptrace.h> #include <net/sock.h> #include <bcc/proto.h> BPF_HASH(currsock, u32, struct sock *); #创建保存socket指针的哈希 // separate data structs for ipv4 and ipv6 struct ipv4_data_t { u64 ts_us; u32 pid; u32 uid; u32 saddr; u32 daddr; u64 ip; u16 dport; char task[TASK_COMM_LEN]; }; BPF_PERF_OUTPUT(ipv4_events); //创建ipv4的输出 struct ipv6_data_t { u64 ts_us; u32 pid; u32 uid; unsigned __int128 saddr; unsigned __int128 daddr; u64 ip; u16 dport; char task[TASK_COMM_LEN]; }; BPF_PERF_OUTPUT(ipv6_events); //创建ipv6的输出 // separate flow keys per address family struct ipv4_flow_key_t { //用于根据地址统计执行tcp_v4_connect的次数,即指定了"-c"或"--count"选项 u32 saddr; u32 daddr; u16 dport; }; BPF_HASH(ipv4_count, struct ipv4_flow_key_t); //统计执行tcp_v4_connect的次数 struct ipv6_flow_key_t { //用于根据地址统计执行tcp_v6_connect的次数,即指定了"-c"或"--count"选项 unsigned __int128 saddr; unsigned __int128 daddr; u16 dport; }; BPF_HASH(ipv6_count, struct ipv6_flow_key_t); //统计执行tcp_v6_connect的次数 int trace_connect_entry(struct pt_regs *ctx, struct sock *sk) //在进入tcp_v4_connect时调用 { if (container_should_be_filtered()) { return 0; } u64 pid_tgid = bpf_get_current_pid_tgid(); //获取64位的pid_tgid u32 pid = pid_tgid >> 32; //tgid位于高32位,右移32位获取 u32 tid = pid_tgid; //tid线程唯一 FILTER_PID //bpf程序对python来说就是一段字符串,此处可以看作是一个标记符,后续使用python的string.replace进行替换。此处表示过滤特定的PID u32 uid = bpf_get_current_uid_gid(); FILTER_UID //过滤特定的UID // stash the sock ptr for lookup on return currsock.update(&tid, &sk); //使用tid作为key,保存sk指针指向的地址 return 0; }; static int trace_connect_return(struct pt_regs *ctx, short ipver) //在从tcp_v4_connect返回时调用 { int ret = PT_REGS_RC(ctx); //获取tcp_v4_connect函数的返回值 u64 pid_tgid = bpf_get_current_pid_tgid(); u32 pid = pid_tgid >> 32; u32 tid = pid_tgid; struct sock **skpp; skpp = currsock.lookup(&tid); //判断当前线程在进入tcp_v4_connect时是否打点采集,即是否执行了上面的trace_connect_entry if (skpp == 0) { return 0; // missed entry } if (ret != 0) { //如果tcp_v4_connect的返回值非0,表示无法发送SYNC报文 // failed to send SYNC packet, may not have populated // socket __sk_common.{skc_rcv_saddr, ...} currsock.delete(&tid); //本次采集失败,删除哈希 return 0; } // pull in details struct sock *skp = *skpp; u16 dport = skp->__sk_common.skc_dport; FILTER_PORT //过滤特定的端口 if (ipver == 4) { IPV4_CODE //根据入参替换为IPV4的处理 } else /* 6 */ { IPV6_CODE //根据入参替换为位IPV6的处理 } currsock.delete(&tid); return 0; } int trace_connect_v4_return(struct pt_regs *ctx) { return trace_connect_return(ctx, 4); } int trace_connect_v6_return(struct pt_regs *ctx) { return trace_connect_return(ctx, 6); } """ struct_init = { 'ipv4': { 'count' : #统计执行tcp_v4_connect的次数 """ struct ipv4_flow_key_t flow_key = {}; flow_key.saddr = skp->__sk_common.skc_rcv_saddr; flow_key.daddr = skp->__sk_common.skc_daddr; flow_key.dport = ntohs(dport); ipv4_count.increment(flow_key);""", 'trace' : #默认执行tcp_v4_connect的跟踪,记录地址,端口等信息 """ struct ipv4_data_t data4 = {.pid = pid, .ip = ipver}; data4.uid = bpf_get_current_uid_gid(); data4.ts_us = bpf_ktime_get_ns() / 1000; data4.saddr = skp->__sk_common.skc_rcv_saddr; data4.daddr = skp->__sk_common.skc_daddr; data4.dport = ntohs(dport); bpf_get_current_comm(&data4.task, sizeof(data4.task)); ipv4_events.perf_submit(ctx, &data4, sizeof(data4));""" }, 'ipv6': { 'count' :#统计执行tcp_v6_connect的次数 """ struct ipv6_flow_key_t flow_key = {}; bpf_probe_read_kernel(&flow_key.saddr, sizeof(flow_key.saddr), skp->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&flow_key.daddr, sizeof(flow_key.daddr), skp->__sk_common.skc_v6_daddr.in6_u.u6_addr32); flow_key.dport = ntohs(dport); ipv6_count.increment(flow_key);""", 'trace' : #默认执行tcp_v6_connect的跟踪,记录地址,端口等信息 """ struct ipv6_data_t data6 = {.pid = pid, .ip = ipver}; data6.uid = bpf_get_current_uid_gid(); data6.ts_us = bpf_ktime_get_ns() / 1000; bpf_probe_read_kernel(&data6.saddr, sizeof(data6.saddr), skp->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&data6.daddr, sizeof(data6.daddr), skp->__sk_common.skc_v6_daddr.in6_u.u6_addr32); data6.dport = ntohs(dport); bpf_get_current_comm(&data6.task, sizeof(data6.task)); ipv6_events.perf_submit(ctx, &data6, sizeof(data6));""" } } # code substitutions if args.count: #如果入参指定了"-c"或"-count",则执行count bpf_text = bpf_text.replace("IPV4_CODE", struct_init['ipv4']['count']) bpf_text = bpf_text.replace("IPV6_CODE", struct_init['ipv6']['count']) else: #如果入参没有指定"-c"或"-count",则执行trace bpf_text = bpf_text.replace("IPV4_CODE", struct_init['ipv4']['trace']) bpf_text = bpf_text.replace("IPV6_CODE", struct_init['ipv6']['trace']) if args.pid: #如果入参指定了"-p"或"--pid",则对PID进行过滤 bpf_text = bpf_text.replace('FILTER_PID', 'if (pid != %s) { return 0; }' % args.pid) if args.port:#如果入参指定了"-P"或"--port",则对端口进行过滤 dports = [int(dport) for dport in args.port.split(',')] dports_if = ' && '.join(['dport != %d' % ntohs(dport) for dport in dports]) bpf_text = bpf_text.replace('FILTER_PORT', 'if (%s) { currsock.delete(&pid); return 0; }' % dports_if) if args.uid:#如果入参指定了"-u"或"--uid",则对UID进行过滤 bpf_text = bpf_text.replace('FILTER_UID', 'if (uid != %s) { return 0; }' % args.uid) bpf_text = filter_by_containers(args) + bpf_text #下面的处理在没有指定特定的过滤时去除标记符 bpf_text = bpf_text.replace('FILTER_PID', '') bpf_text = bpf_text.replace('FILTER_PORT', '') bpf_text = bpf_text.replace('FILTER_UID', '') if debug or args.ebpf: print(bpf_text) if args.ebpf: exit() # process event def print_ipv4_event(cpu, data, size): #TCP4跟踪的打印函数 event = b["ipv4_events"].event(data) global start_ts if args.timestamp: if start_ts == 0: start_ts = event.ts_us printb(b"%-9.3f" % ((float(event.ts_us) - start_ts) / 1000000), nl="") if args.print_uid: printb(b"%-6d" % event.uid, nl="") printb(b"%-6d %-12.12s %-2d %-16s %-16s %-4d" % (event.pid, event.task, event.ip, inet_ntop(AF_INET, pack("I", event.saddr)).encode(), #转换为主机序地址 inet_ntop(AF_INET, pack("I", event.daddr)).encode(), event.dport)) #转换为主机序地址和端口 def print_ipv6_event(cpu, data, size): #TCP6跟踪的打印函数 event = b["ipv6_events"].event(data) global start_ts if args.timestamp: if start_ts == 0: start_ts = event.ts_us printb(b"%-9.3f" % ((float(event.ts_us) - start_ts) / 1000000), nl="") if args.print_uid: printb(b"%-6d" % event.uid, nl="") printb(b"%-6d %-12.12s %-2d %-16s %-16s %-4d" % (event.pid, event.task, event.ip, inet_ntop(AF_INET6, event.saddr).encode(), inet_ntop(AF_INET6, event.daddr).encode(), event.dport)) def depict_cnt(counts_tab, l3prot='ipv4'): # for k, v in sorted(counts_tab.items(), key=lambda counts: counts[1].value, reverse=True): depict_key = "" if l3prot == 'ipv4': depict_key = "%-25s %-25s %-20s" % ((inet_ntop(AF_INET, pack('I', k.saddr))), inet_ntop(AF_INET, pack('I', k.daddr)), k.dport) else: depict_key = "%-25s %-25s %-20s" % ((inet_ntop(AF_INET6, k.saddr)), inet_ntop(AF_INET6, k.daddr), k.dport) print ("%s %-10d" % (depict_key, v.value)) # initialize BPF b = BPF(text=bpf_text) b.attach_kprobe(event="tcp_v4_connect", fn_name="trace_connect_entry") b.attach_kprobe(event="tcp_v6_connect", fn_name="trace_connect_entry") b.attach_kretprobe(event="tcp_v4_connect", fn_name="trace_connect_v4_return") b.attach_kretprobe(event="tcp_v6_connect", fn_name="trace_connect_v6_return") print("Tracing connect ... Hit Ctrl-C to end") if args.count: try: while 1: sleep(99999999) except KeyboardInterrupt: pass # header print("\n%-25s %-25s %-20s %-10s" % ( "LADDR", "RADDR", "RPORT", "CONNECTS")) depict_cnt(b["ipv4_count"]) depict_cnt(b["ipv6_count"], l3prot='ipv6') # read events else: # header if args.timestamp: print("%-9s" % ("TIME(s)"), end="") if args.print_uid: print("%-6s" % ("UID"), end="") print("%-6s %-12s %-2s %-16s %-16s %-4s" % ("PID", "COMM", "IP", "SADDR", "DADDR", "DPORT")) start_ts = 0 # read events b["ipv4_events"].open_perf_buffer(print_ipv4_event) b["ipv6_events"].open_perf_buffer(print_ipv6_event) while 1: try: b.perf_buffer_poll() except KeyboardInterrupt: exit()
上面C程序采集了内核数据skp->sk_common.skc_dport,skp->sk_common.skc_rcv_saddr和skp->__sk_common.skc_daddr。与第一个例子类似,这类数据可以直接参考tcp_v4_connect内核源码的实现,源码中通过struct inet_sock *inet = inet_sk(sk);
来获取源目的地址和端口,inet_sock的结构体定义如下,可以明显看到inet_daddr,inet_rcv_saddr和inet_dport与上述代码获取的内容相同,进而可以了解到获取这些成员的方式。
struct inet_sock { /* sk and pinet6 has to be the first two members of inet_sock */ struct sock sk; #if IS_ENABLED(CONFIG_IPV6) struct ipv6_pinfo *pinet6; #endif /* Socket demultiplex comparisons on incoming packets. */ #define inet_daddr sk.__sk_common.skc_daddr #define inet_rcv_saddr sk.__sk_common.skc_rcv_saddr #define inet_dport sk.__sk_common.skc_dport #define inet_num sk.__sk_common.skc_num ...
此外在inet_sock
结构体的注释中给出详细的说明,非常明了:
* @inet_daddr - Foreign IPv4 addr * @inet_rcv_saddr - Bound local IPv4 addr * @inet_dport - Destination port * @inet_num - Local port
因此可以直接参考tcp_v4_connect
的源码修改ipv4中获取地址和端口的实现,效果是一样的:
struct_init = { 'ipv4': { 'count' : """ struct ipv4_flow_key_t flow_key = {}; struct inet_sock *inet = inet_sk(skp); flow_key.saddr = inet->inet_rcv_saddr; flow_key.daddr = inet->inet_daddr; u16 dport = inet->inet_dport; flow_key.dport = ntohs(dport); ipv4_count.increment(flow_key);""", 'trace' : """ struct ipv4_data_t data4 = {.pid = pid, .ip = ipver}; data4.uid = bpf_get_current_uid_gid(); data4.ts_us = bpf_ktime_get_ns() / 1000; struct inet_sock *inet = inet_sk(skp); data4.saddr = inet->inet_rcv_saddr; data4.daddr = inet->inet_daddr; u16 dport = inet->inet_dport; data4.dport = ntohs(dport); bpf_get_current_comm(&data4.task, sizeof(data4.task)); ipv4_events.perf_submit(ctx, &data4, sizeof(data4));""" }, 'ipv6': { 'count' : """ struct ipv6_flow_key_t flow_key = {}; bpf_probe_read_kernel(&flow_key.saddr, sizeof(flow_key.saddr), skp->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&flow_key.daddr, sizeof(flow_key.daddr), skp->__sk_common.skc_v6_daddr.in6_u.u6_addr32); flow_key.dport = ntohs(dport); ipv6_count.increment(flow_key);""", 'trace' : """ struct ipv6_data_t data6 = {.pid = pid, .ip = ipver}; data6.uid = bpf_get_current_uid_gid(); data6.ts_us = bpf_ktime_get_ns() / 1000; bpf_probe_read_kernel(&data6.saddr, sizeof(data6.saddr), skp->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&data6.daddr, sizeof(data6.daddr), skp->__sk_common.skc_v6_daddr.in6_u.u6_addr32); data6.dport = ntohs(dport); bpf_get_current_comm(&data6.task, sizeof(data6.task)); ipv6_events.perf_submit(ctx, &data6, sizeof(data6));""" } }
此外注意到读取TCP4的数据时没有用到bpf_probe_read_kernel,但读取TCP6的数据时用到了bpf_probe_read_kernel
,这是因为TCP4的地址是一个u32
类型的数据,直接赋值即可;而TCP6的地址结构如下,无法通过直接赋值获取,因此需要调用bpf_probe_read_kernel
拷贝内存。
struct in6_addr { union { __u8 u6_addr8[16]; #if __UAPI_DEF_IN6_ADDR_ALT __be16 u6_addr16[8]; __be32 u6_addr32[4]; #endif } in6_u; #define s6_addr in6_u.u6_addr8 #if __UAPI_DEF_IN6_ADDR_ALT #define s6_addr16 in6_u.u6_addr16 #define s6_addr32 in6_u.u6_addr32 #endif };
整体看,上面代码使用了python处理了一些C程序的替换和拼接,大部分跟可观测性并没有什么不同,当然,最主要的还是需要了解内核处理流程,选择正确的内核函数进行打点。
上面给出的方式无法修改报文内容以及对报文进行重定向等操作。ebpf提供了XDP和tc两种管理网络的方式,更多可以参见下一篇博客。