【Python】Python 仿真OFDM发射机、信道和接收机-实现多种调制方式

简介: 文章介绍了如何使用Python和Commpy工具包实现OFDM通信系统的仿真,包括发射机、信道和接收机的过程,并支持BPSK、QPSK、8PSK、16QAM、64QAM等多种调制方式,同时展示了导频插入、信道冲击响应、星座映射的可视化,并计算了系统的误比特率。

1.png

1 引言

OFDM的通信系统仿真,Matlab实现的版本比比皆是,Python版本的底层详细的仿真过程缺少之又少,本人根据Commpy工具包,实现了OFDM的信号发射、经过信道、接收端接收的过程。实现的调制方式有BPSK、QPSK、8PSK、16QAM、64QAM。并可视化了导频的插入方式、信道冲击响应、信号解调前的星座映射和解调后的星座映射,以及计算了仿真系统的误比特率。完整代码的见本人的githubPython实现OFDM仿真

commpy包的官方文档https://commpy.readthedocs.io/en/latest/index.html

commpy包的安装方式

pip install scikit-commpy

2 Python实现

2.1 初始化和定义函数

2.1.1 初始化参数

导入包

import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
import commpy as cpy
K = 64 # OFDM子载波数量
CP = K//4  #25%的循环前缀长度
P = 8  # 导频数
pilotValue = 3+3j  # 导频格式
Modulation_type = 'QAM16' #调制方式,可选BPSK、QPSK、8PSK、QAM16、QAM64
channel_type ='random' # 信道类型,可选awgn
SNRdb = 25  # 接收端的信噪比(dB)
allCarriers = np.arange(K)  # 子载波编号 ([0, 1, ... K-1])
pilotCarrier = allCarriers[::K//P]  # 每间隔P个子载波一个导频
# 为了方便信道估计,将最后一个子载波也作为导频
pilotCarriers = np.hstack([pilotCarrier, np.array([allCarriers[-1]])])
P = P+1 # 导频的数量也需要加1

2.1.2 可视化导频插入的格式

# 可视化数据和导频的插入方式
dataCarriers = np.delete(allCarriers, pilotCarriers)
plt.figure(figsize=(8, 0.8))
plt.plot(pilotCarriers, np.zeros_like(pilotCarriers), 'bo', label='pilot')
plt.plot(dataCarriers, np.zeros_like(dataCarriers), 'ro', label='data')
plt.legend(fontsize=10, ncol=2)
plt.xlim((-1, K))
plt.ylim((-0.1, 0.3))
plt.xlabel('Carrier index')
plt.yticks([])
plt.grid(True)
plt.savefig('carrier.png')

2.png

2.1.3 定义调制和解调方式

m_map = {"BPSK": 1, "QPSK": 2, "8PSK": 3, "QAM16": 4, "QAM64": 6}
mu = m_map[Modulation_type]
payloadBits_per_OFDM = len(dataCarriers)*mu  # 每个 OFDM 符号的有效载荷位数
# 定制调制方式
def Modulation(bits):
    if Modulation_type == "QPSK":
        PSK4 = cpy.PSKModem(4)
        symbol = PSK4.modulate(bits)
        return symbol
    elif Modulation_type == "QAM64":
        QAM64 = cpy.QAMModem(64)
        symbol = QAM64.modulate(bits)
        return symbol
    elif Modulation_type == "QAM16":
        QAM16 = cpy.QAMModem(16)
        symbol = QAM16.modulate(bits)
        return symbol
    elif Modulation_type == "8PSK":
        PSK8 = cpy.PSKModem(8)
        symbol = PSK8.modulate(bits)
        return symbol
    elif Modulation_type == "BPSK":
        BPSK = cpy.PSKModem(2)
        symbol = BPSK.modulate(bits)
        return symbol
# 定义解调方式
def DeModulation(symbol):
    if Modulation_type == "QPSK":
        PSK4 = cpy.PSKModem(4)
        bits = PSK4.demodulate(symbol, demod_type='hard')
        return bits
    elif Modulation_type == "QAM64":
        QAM64 = cpy.QAMModem(64)
        bits = QAM64.demodulate(symbol, demod_type='hard')
        return bits
    elif Modulation_type == "QAM16":
        QAM16 = cpy.QAMModem(16)
        bits = QAM16.demodulate(symbol, demod_type='hard')
        return bits
    elif Modulation_type == "8PSK":
        PSK8 = cpy.PSKModem(8)
        bits = PSK8.demodulate(symbol, demod_type='hard')
        return bits
    elif Modulation_type == "BPSK":
        BPSK = cpy.PSKModem(2)
        bits = BPSK.demodulate(symbol, demod_type='hard')
        return bits

调制方式就是将比特流映射到星座图,得到了复数数值,在信道中以复数数值进行传输。

16QAM的星座图,如下图所示

3.png

2.1.4 定义信道

# 可视化信道冲击响应,仿真信道
# the impulse response of the wireless channel
channelResponse = np.array([1, 0, 0.3+0.3j])
H_exact = np.fft.fft(channelResponse, K)
plt.plot(allCarriers, abs(H_exact))
plt.xlabel('Subcarrier index')
plt.ylabel('$|H(f)|$')
plt.grid(True)
plt.xlim(0, K-1)
# 定义信道
def add_awgn(x_s, snrDB):
    data_pwr = np.mean(abs(x_s**2))
    noise_pwr = data_pwr/(10**(snrDB/10))
    noise = 1/np.sqrt(2) * (np.random.randn(len(x_s)) + 1j *
                            np.random.randn(len(x_s))) * np.sqrt(noise_pwr)
    return x_s + noise, noise_pwr
def channel(in_signal, SNRdb, channel_type="awgn"):
    channelResponse = np.array([1, 0, 0.3+0.3j]) #随意仿真信道冲击响应
    if channel_type == "random":
        convolved = np.convolve(in_signal, channelResponse)
        out_signal, noise_pwr = add_awgn(convolved, SNRdb)
    elif channel_type == "awgn":
        out_signal, noise_pwr = add_awgn(in_signal, SNRdb)
    return out_signal, noise_pwr

可视化冲击响应图,此处的信道衰落,只是举例实现了简单的一个冲击响应波形。复杂的信道模型,根据自己的信道去实现仿真过程。awgn表示加入高斯噪声。

4.png

2.2 OFDM仿真过程

2.2.1 发送端

# 5.1 产生比特流
bits = np.random.binomial(n=1, p=0.5, size=(payloadBits_per_OFDM, ))
# 5.2 比特信号调制
QAM_s = Modulation(bits)
# 5.3 插入导频和数据,生成OFDM符号
def OFDM_symbol(QAM_payload):
    symbol = np.zeros(K, dtype=complex) # 子载波位置
    symbol[pilotCarriers] = pilotValue  # 在导频位置插入导频
    symbol[dataCarriers] = QAM_payload  # 在数据位置插入数据
    return symbol
OFDM_data = OFDM_symbol(QAM_s)
# 5.4 快速傅里叶逆变换
def IDFT(OFDM_data):
    return np.fft.ifft(OFDM_data)
OFDM_time = IDFT(OFDM_data)
# 5.5 添加循环前缀
def addCP(OFDM_time):
    cp = OFDM_time[-CP:]               
    return np.hstack([cp, OFDM_time])  
OFDM_withCP = addCP(OFDM_time)

2.2.2 信道

经过信道,可视化加入冲击响应后的信号和原始信号的波形

# 5.6 经过信道
OFDM_TX = OFDM_withCP
OFDM_RX = channel(OFDM_TX, SNRdb, "random")[0]
plt.figure(figsize=(8,2))
plt.plot(abs(OFDM_TX), label='TX signal')
plt.plot(abs(OFDM_RX), label='RX signal')
plt.legend(fontsize=10)
plt.xlabel('Time'); plt.ylabel('$|x(t)|$');
plt.grid(True);
# plt.savefig('tran-receiver.png')

5.png

2.2.3 接收端

接收端,首先去循环前缀、再快速傅里叶变换、再进行信道估计,再以信道估计的冲击响应去均衡信号,

# 5.7 接收端,去除循环前缀
def removeCP(signal):
    return signal[CP:(CP+K)]
OFDM_RX_noCP = removeCP(OFDM_RX)
# 5.8 快速傅里叶变换
def DFT(OFDM_RX):
    return np.fft.fft(OFDM_RX)
OFDM_demod = DFT(OFDM_RX_noCP)
# 5.9 信道估计
def channelEstimate(OFDM_demod):
    pilots = OFDM_demod[pilotCarriers]  # 取导频处的数据
    Hest_at_pilots = pilots / pilotValue  # LS信道估计

    # 在导频载波之间进行插值以获得估计,然后利用插值估计得到数据下标处的信道响应
    Hest_abs = interpolate.interp1d(pilotCarriers, abs(Hest_at_pilots), kind='linear')(allCarriers)
    Hest_phase = interpolate.interp1d(pilotCarriers, np.angle(Hest_at_pilots), kind='linear')(allCarriers)
    Hest = Hest_abs * np.exp(1j*Hest_phase)

    plt.plot(allCarriers, abs(H_exact), label='Correct Channel')
    plt.scatter(pilotCarriers, abs(Hest_at_pilots), label='Pilot estimates')
    plt.plot(allCarriers, abs(Hest), label='Estimated channel via interpolation')
    plt.grid(True); plt.xlabel('Carrier index'); plt.ylabel('$|H(f)|$'); plt.legend(fontsize=10)
    plt.ylim(0,2)
    plt.savefig('信道响应估计.png')
    return Hest
Hest = channelEstimate(OFDM_demod)

图中所示蓝色点表示信道估计点,黄色的连接线表示估计的冲击响应波形。

6.png

# 5.10 均衡
def equalize(OFDM_demod, Hest):
    return OFDM_demod / Hest
equalized_Hest = equalize(OFDM_demod, Hest)
def get_payload(equalized):
    return equalized[dataCarriers]
QAM_est = get_payload(equalized_Hest)
# 5.10 获取数据位置的数据
def get_payload(equalized):
    return equalized[dataCarriers]
QAM_est = get_payload(equalized_Hest)
# 可视化均衡后的星座图
plt.plot(QAM_est.real, QAM_est.imag, 'bo')
plt.plot(QAM_s.real, QAM_s.imag, 'ro')

plt.grid(True)
plt.xlabel('Real part')
plt.ylabel('Imaginary Part')
plt.title("Received constellation")
plt.savefig('map.png')

7.png

# 5.11 反映射,解调
bits_est = DeModulation(QAM_est)
# 5.12 计算误比特率
print ("误比特率BER: ", np.sum(abs(bits-bits_est))/len(bits))
目录
相关文章
|
3月前
|
数据可视化 算法 Python
【数字通信革命】深入剖析Python实现BPSK、QPSK到QAM信号调制的奥秘,解锁高速数据传输的密钥!
【8月更文挑战第2天】在通信系统中,信号调制至关重要,它将信息嵌入载波信号中以便传输。本文通过Python实现三种基本调制技术:BPSK、QPSK和16-QAM,并提供示例代码。首先需安装NumPy、SciPy和Matplotlib库。BPSK是最简单的相位调制,每个符号携带一位信息;QPSK则每个符号携带两位信息,通过四种相位表示;16-QAM结合幅度和相位调制,每个符号携带更多比特信息。本文提供的代码演示了这些调制方式的实现过程,并利用Matplotlib可视化结果。了解这些调制技术有助于深入探索信号处理领域。
143 18
|
3月前
|
Python
【信号处理】python按原理实现BPSK、QPSK、QAM信号调制
本文提供了两种不同的方法来实现16-QAM(正交幅度调制)的调制和解调过程,一种是使用commpy库,另一种是通过手动定义映射字典来实现。
234 8
|
3月前
|
算法 Python
【Python】Python 实现破零(ZF)和最小均方误差(MMSE)信道均衡
无线通信中用于减少信号失真和噪声影响的两种常见信道均衡技术:Zero Forcing (ZF) 和 Minimum Mean Square Error (MMSE),并给出了ZF均衡器的数学表达式及其实现方法。
87 0
|
3月前
|
Python
【信号处理】Python实现BPSK、QPSK、8PSK、8QAM、16QAM、64QAM的调制和解调
使用Commpy开源包在Python中实现BPSK、QPSK、8PSK、8QAM、16QAM、64QAM等调制和解调方法的具体代码示例,但不包括8QAM的Commpy实现,以及一个完整的编码和解码示例。
243 0
|
10天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
1天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
13 4
|
1天前
|
设计模式 程序员 数据处理
编程之旅:探索Python中的装饰器
【10月更文挑战第34天】在编程的海洋中,Python这艘航船以其简洁优雅著称。其中,装饰器作为一项高级特性,如同船上的风帆,让代码更加灵活和强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一起感受编程之美。
|
3天前
|
存储 人工智能 数据挖掘
从零起步,揭秘Python编程如何带你从新手村迈向高手殿堂
【10月更文挑战第32天】Python,诞生于1991年的高级编程语言,以其简洁明了的语法成为众多程序员的入门首选。从基础的变量类型、控制流到列表、字典等数据结构,再到函数定义与调用及面向对象编程,Python提供了丰富的功能和强大的库支持,适用于Web开发、数据分析、人工智能等多个领域。学习Python不仅是掌握一门语言,更是加入一个充满活力的技术社区,开启探索未知世界的旅程。
13 5

热门文章

最新文章