尝试一下,在本地使用 ChatGLM3 模型搭建离线 AI 聊天系统

简介: 尝试一下,在本地使用 ChatGLM3 模型搭建离线 AI 聊天系统

什么是 ChatGLM3?

ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。

ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,较前两代模型对话流畅、部署门槛也低。

本地搭建效果


147e221db100a50a5bae89626886e239.png


db8a8ab5272165626c6212f9f3d5f369.png

简单描述下本地电脑的配置:

系统:macOS 11.4

处理器:3.2 GHz 六核Intel Core i7

内存:32G

说实话,我本地运行有点吃力,大家可以考虑在一些算力平台上部署玩玩。

搭建步骤

1. ChatGLM3 下载

代码仓库:https://github.com/THUDM/ChatGLM3

git clone https://github.com/THUDM/ChatGLM3

这个项目中没有包含模型,只有一些简单的自带聊天功能和相关接口示例,你需要下载所需的模型。

db8a8ab5272165626c6212f9f3d5f369.png


fcab1f653648d9a274b5763007010fb4.png

2. ChatGLM3-6B 模型下载

f7cba2838af2d6ddaad5320cc263e333.png

完整的模型实现可以在 Hugging Face Hub。如果你的网络环境较差,下载模型参数可能会花费较长时间甚至失败。

此时可以先将模型下载到本地,然后从本地加载。

从 Hugging Face Hub 下载模型需要先安装 Git LFS,然后运行

git clone https://huggingface.co/THUDM/chatglm-6b

如果你从 Hugging Face Hub 上下载 checkpoint 的速度较慢,可以只下载模型实现

GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/THUDM/chatglm-6b

然后从 https://cloud.tsinghua.edu.cn/d/fb9f16d6dc8f482596c2/ 手动下载模型参数文件,并将下载的文件替换到本地的 chatglm-6b 目录下。

将模型下载到本地之后,将以上代码中的 THUDM/chatglm-6b 替换为你本地的 chatglm-6b 文件夹的路径,即可从本地加载模型。

3. 安装并激活虚拟环境

conda create --name chatglm3 python=3.10
conda activate chatglm3

4. 安装基础依赖

cd ChatGLM3
pip install -r requirements.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple

5. 安装 composite_demo 依赖

cd composite_demo
pip install -r requirements.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple

演示中使用 Code Interpreter 还需要安装 Jupyter 内核:

pip install ipykernel -i https://mirror.sjtu.edu.cn/pypi/web/simple
ipython kernel install --name chatglm3 --user

6. 修改 client.py 里面的配置信息

// 修改 MODEL_PATH , chatglm3-6b 绝对路径
MODEL_PATH = os.environ.get('MODEL_PATH', '/Users/xinliang/ai/chatglm3-6b')

7. CPU 部署代码调整

// 如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
// 调整 client.py 150 ~ 155 行代码
self.model = (
    AutoModel.from_pretrained(
        MODEL_PATH,
        trust_remote_code=True,
        device_map="auto"
    ).float().eval())

8. 运行

streamlit run main.py

运行成功后浏览器会自动打开上面文章中搭建成功的 web 页面。

目录
相关文章
|
27天前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
323 109
|
14天前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
67 1
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
|
2月前
|
机器学习/深度学习 人工智能 监控
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
大型动作模型(LAMs)作为人工智能新架构,融合神经网络与符号逻辑,实现企业重复任务的自动化处理。通过神经符号集成、动作执行管道、模式学习、任务分解等核心技术,系统可高效解析用户意图并执行复杂操作,显著提升企业运营效率并降低人工成本。其自适应学习能力与上下文感知机制,使自动化流程更智能、灵活,为企业数字化转型提供坚实支撑。
165 0
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
|
2月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
190 6
|
2月前
|
存储 人工智能 算法
AI测试平台实战:深入解析自动化评分和多模型对比评测
在AI技术迅猛发展的今天,测试工程师面临着如何高效评估大模型性能的全新挑战。本文将深入探讨AI测试平台中自动化评分与多模型对比评测的关键技术与实践方法,为测试工程师提供可落地的解决方案。
|
3月前
|
SQL 人工智能 自然语言处理
数据 + 模型 驱动 AI Native 应用发展
随着人工智能技术的飞速发展,从生成式人工智能(GenAI)到自主代理人工智能(Agentic AI)的演进,企业面临着构建 AI Native 应用的机遇与挑战。本文将深入探讨 AI 开发模式的转变、企业应用的挑战以及技术架构和开发工具的应用,旨在为读者提供一个全面的视角,以理解如何利用数据和模型驱动 AI Native 应用的发展。
148 0
|
23天前
|
人工智能 监控 Kubernetes
稳定支撑大规模模型调用,携程旅游的 AI 网关实践
为了进一步提升服务水平和服务质量,携程很早就开始在人工智能大模型领域进行探索。而随着工作的深入,大模型服务的应用领域不断扩大,公司内部需要访问大模型服务的应用也越来越多,不可避免的就遇到了几个问题,我们自然就会想到使用网关来对这些服务接入进行统一管理,并增加各种切面上的流量治理功能。
119 34

热门文章

最新文章