尝试一下,在本地使用 ChatGLM3 模型搭建离线 AI 聊天系统

简介: 尝试一下,在本地使用 ChatGLM3 模型搭建离线 AI 聊天系统

什么是 ChatGLM3?

ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。

ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,较前两代模型对话流畅、部署门槛也低。

本地搭建效果


147e221db100a50a5bae89626886e239.png


db8a8ab5272165626c6212f9f3d5f369.png

简单描述下本地电脑的配置:

系统:macOS 11.4

处理器:3.2 GHz 六核Intel Core i7

内存:32G

说实话,我本地运行有点吃力,大家可以考虑在一些算力平台上部署玩玩。

搭建步骤

1. ChatGLM3 下载

代码仓库:https://github.com/THUDM/ChatGLM3

git clone https://github.com/THUDM/ChatGLM3

这个项目中没有包含模型,只有一些简单的自带聊天功能和相关接口示例,你需要下载所需的模型。

db8a8ab5272165626c6212f9f3d5f369.png


fcab1f653648d9a274b5763007010fb4.png

2. ChatGLM3-6B 模型下载

f7cba2838af2d6ddaad5320cc263e333.png

完整的模型实现可以在 Hugging Face Hub。如果你的网络环境较差,下载模型参数可能会花费较长时间甚至失败。

此时可以先将模型下载到本地,然后从本地加载。

从 Hugging Face Hub 下载模型需要先安装 Git LFS,然后运行

git clone https://huggingface.co/THUDM/chatglm-6b

如果你从 Hugging Face Hub 上下载 checkpoint 的速度较慢,可以只下载模型实现

GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/THUDM/chatglm-6b

然后从 https://cloud.tsinghua.edu.cn/d/fb9f16d6dc8f482596c2/ 手动下载模型参数文件,并将下载的文件替换到本地的 chatglm-6b 目录下。

将模型下载到本地之后,将以上代码中的 THUDM/chatglm-6b 替换为你本地的 chatglm-6b 文件夹的路径,即可从本地加载模型。

3. 安装并激活虚拟环境

conda create --name chatglm3 python=3.10
conda activate chatglm3

4. 安装基础依赖

cd ChatGLM3
pip install -r requirements.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple

5. 安装 composite_demo 依赖

cd composite_demo
pip install -r requirements.txt -i https://mirror.sjtu.edu.cn/pypi/web/simple

演示中使用 Code Interpreter 还需要安装 Jupyter 内核:

pip install ipykernel -i https://mirror.sjtu.edu.cn/pypi/web/simple
ipython kernel install --name chatglm3 --user

6. 修改 client.py 里面的配置信息

// 修改 MODEL_PATH , chatglm3-6b 绝对路径
MODEL_PATH = os.environ.get('MODEL_PATH', '/Users/xinliang/ai/chatglm3-6b')

7. CPU 部署代码调整

// 如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
// 调整 client.py 150 ~ 155 行代码
self.model = (
    AutoModel.from_pretrained(
        MODEL_PATH,
        trust_remote_code=True,
        device_map="auto"
    ).float().eval())

8. 运行

streamlit run main.py

运行成功后浏览器会自动打开上面文章中搭建成功的 web 页面。

目录
相关文章
|
22天前
|
人工智能 自然语言处理 搜索推荐
最强AI写作助手,内置4o模型,引领AI智能问答的新纪元
随着人工智能技术的飞速进步,BKAI凭借其强大的GPT-4o模型,正在重新定义智能问答的标准。其中表现最强的AI助手神器:BKAI
|
3天前
|
人工智能 自然语言处理 数据挖掘
【通义】AI视界|性能超越GPT-4o?最强大的开源AI模型来了……
本文介绍了五项最新AI技术动态,包括性能超越GPT-4o的开源AI模型Reflection70B、智谱清言App限时免费的视频通话功能、哈佛医学院研发的癌症诊断AI模型CHIEF、Replit推出的AI编程助手,以及英特尔与日本AIST合作设立的芯片制造研发中心。这些进展展示了AI领域的快速创新与广泛应用。更多详情,请访问通义官网体验。
|
2天前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
2天前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
24天前
|
人工智能 边缘计算 自然语言处理
谷歌微型AI模型“Gemma 2 2B”正出人意料地挑战科技巨头
谷歌微型AI模型“Gemma 2 2B”正出人意料地挑战科技巨头
谷歌微型AI模型“Gemma 2 2B”正出人意料地挑战科技巨头
|
24天前
|
人工智能 自然语言处理 搜索推荐
苹果与EPFL合作发布4M AI模型,开启AI新时代
苹果与EPFL合作发布4M AI模型,开启AI新时代
苹果与EPFL合作发布4M AI模型,开启AI新时代
|
9天前
|
机器学习/深度学习 人工智能
AI模型提早5年预警乳腺癌,MIT研究登Science获LeCun转发
【9月更文挑战第1天】麻省理工学院(MIT)研究人员开发的深度学习AI模型,在乳腺癌早期预警方面取得突破性进展,相比传统方法提前5年预警癌症,准确率超过90%。此成果不仅在医学界引起轰动,还获得了人工智能领域知名学者Yann LeCun的高度评价。尽管面临准确性和可解释性的挑战,但该研究展示了AI在医疗领域的巨大潜力,有望革新乳腺癌的早期筛查和诊断方式。论文详情见[链接]。
17 3
|
12天前
|
机器学习/深度学习 人工智能 Android开发
揭秘AI编程:从零开始构建你的第一个机器学习模型移动应用开发之旅:从新手到专家
【8月更文挑战第29天】本文将带你走进人工智能的奇妙世界,一起探索如何从零开始构建一个机器学习模型。我们将一步步解析整个过程,包括数据收集、预处理、模型选择、训练和测试等步骤,让你对AI编程有一个全面而深入的理解。无论你是AI初学者,还是有一定基础的开发者,都能在这篇文章中找到你需要的信息和启示。让我们一起开启这段激动人心的AI编程之旅吧! 【8月更文挑战第29天】在这篇文章中,我们将探索移动应用开发的奇妙世界。无论你是刚刚踏入这个领域的新手,还是已经有一定经验的开发者,这篇文章都将为你提供有价值的信息和指导。我们将从基础开始,逐步深入到更复杂的主题,包括移动操作系统的选择、开发工具的使用、
|
21天前
|
机器学习/深度学习 人工智能 人机交互
ICML 2024:AI也会刷抖音!清华领衔发布短视频全模态理解新模型
【8月更文挑战第20天】SALMONN是由清华大学在ICML 2024发表的一种开创性的多模态模型,专为短视频全模态理解设计。它集成了预训练文本大模型与语音、音频编码器,能直接处理多样音频输入,在自动语音识别、翻译、情绪识别等任务中表现出色。SALMONN展现了令人兴奋的新能力,如翻译未训练语言和基于语音的问答。通过少样本激活微调,可进一步发掘其跨模态潜能。尽管如此,模型的计算成本和泛化能力仍是待克服的挑战。SALMONN标志着AI在具备通用听觉理解方面迈出重要一步。[论文链接: https://arxiv.org/abs/2310.13289]
46 3
|
23天前
|
人工智能
多模态AI单词助记模型体验
一文带你了解多模态AI单词助记模型的优与劣
167 1
下一篇
DDNS