【机器学习】P问题、NP问题、NP-hard、NP-C问题解析与举例理解

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 本文解析了P问题、NP问题、NP-hard问题以及NP-Complete问题的概念,并通过实例帮助理解NP问题的特点和复杂性。

1 基本概念

1.1 多项式和时间复杂度

(1)多项式
a x n + b x n − 1 + c ax^n+bx^{n-1}+c axn+bxn−1+c,形如这种形式的就被称为x的最高位为n的多项式。
(1)时间复杂度
定义为随着问题规模的增大,算法执行时间增长的快慢。它可以用来表示一个算法运行的时间效率。举个例子,冒泡排序的时间复杂度为 O ( n 2 ) O(n^2) O(n2) ,取其最高次,可以看出,这是一个时间复杂度为多项式的表示方式

1.2 P和NP

(1)P(deterministic polynomial time question):
多项式时间问题,简称P问题,意思是能在多项式时间内解决的问题。简单理解是算起来很快的问题
(2)NP(No-deterministic polynomial time question)
非确定多项式时间问题,简称NP问题,就是能在多项式时间验证答案正确与否的问题。简单的理解是NP问题算起来不一定快,但对于任何答案我们都可以快速的验证这个答案对不对。

1.3 NP-hard和NP-C

NP-hardness问题:任意NP问题都可以在多项式时间内归约为一类问题,这类问题就称为NP-hard问题,这是比所有的NP问题都难的问题。归约的意思是为了解决问题A,先将问题A归约为另一个问题B,解决问题B同时也间接解决了问题A。
NP-Complete问题:但若所有的NP问题都能多项式归约到一类问题X,则称X为NP-hard问题,进一步如果X是NP的,称X是NP complete的。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。其定义要满足2个条件:一是NP-hard的问题,二是NP问题。

1.4 总结

(1)理想:NP问题 = P问题
NP=P意思是,如果对于一个问题能在多项式时间内验证其答案的正确性,那么是否能在多项式时间内解决它。
因为如果将所有的NP问题都多项式规约到某一个NP Complete问题,且只要一个NP Complete问题能在多项式时间内得到解决的话,那么所有的NP问题都可以在多项式时间内得到解决了。这个问题的解决将会带来世界性的进步。
(2)现实:我们仍然相信P问题!=NP问题
至今并没有人能证明某个NP Complete问题是P的。而且目前主流的观点是P不等于NP,当然这也没有确切的证明。如左图所示。

1.png

2 举例理解NP问题

最著名的NP问题是TSP旅行商推销问题。题目是在以下条件下,求出访问所有城市的最短路径

  • 推销商有N个目的地城市
  • 他需要访问所有城市一次,即不能重复
  • 任意两座城市都是连接的,距离已知,即对应有权完全图

分析:
解决这个问题如果单纯的用枚举法来列举的话会有(n-1)! 种,已经不是多项式时间的算法了。将会是N的阶乘的复杂度O(n!)。

但是有快捷的方法,可以用猜的,假设人品爆炸猜几次就猜中了一条小于长度a的路径,TSP问题解决了,皆大欢喜。可是,我不可能每次都猜的那么准,也许我要猜完所有种方案呢?所以我们说,这是一个NP类问题。也就是这个问题能在多项式的时间内验证并得出问题的正确解,可是我们却不知道该问题是否存在一个多项式时间的算法,每次都能解决他(注意,这里是不知道,不是不存在,即能解决,但是无法找到一个多项式时间的算法的通解)

3 其他NP问题

  • Edge Cover 边覆盖
  • Set Cover 集合覆盖
  • Steiner Tree(Forest) 斯坦纳树
  • Max cut 最大割
  • SAT 可满足性
目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 算法
R语言中的机器学习库:caret与mlr的深度解析
【9月更文挑战第2天】Caret和mlr是R语言中两个非常重要的机器学习库,它们在数据预处理、模型构建、调优和评估等方面提供了丰富的功能。Caret以其易用性和集成性著称,适合初学者和快速原型开发;而mlr则以其全面性和可扩展性见长,适合处理复杂的机器学习项目。在实际应用中,用户可以根据具体需求和项目特点选择合适的库进行开发。无论是学术研究、商业智能还是教育场景,这两个库都能为数据科学家和机器学习爱好者提供强大的支持。
|
12天前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
30 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
7天前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
67 3
|
7天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
25 2
|
1月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
233 1
|
2月前
|
图形学 机器学习/深度学习 人工智能
颠覆传统游戏开发,解锁未来娱乐新纪元:深度解析如何运用Unity引擎结合机器学习技术,打造具备自我进化能力的智能游戏角色,彻底改变你的游戏体验——从基础设置到高级应用全面指南
【8月更文挑战第31天】本文探讨了如何在Unity中利用机器学习增强游戏智能。作为领先的游戏开发引擎,Unity通过ML-Agents Toolkit等工具支持AI代理的强化学习训练,使游戏角色能自主学习完成任务。文章提供了一个迷宫游戏示例及其C#脚本,展示了环境观察、动作响应及奖励机制的设计,并介绍了如何设置训练流程。此外,还提到了Unity与其他机器学习框架(如TensorFlow和PyTorch)的集成,以实现更复杂的游戏玩法。通过这些技术,游戏的智能化程度得以显著提升,为玩家带来更丰富的体验。
54 1
|
2月前
|
机器学习/深度学习 数据挖掘
机器学习模型的选择与评估:技术深度解析
【8月更文挑战第21天】机器学习模型的选择与评估是一个复杂而重要的过程。通过深入理解问题、选择合适的评估指标和交叉验证方法,我们可以更准确地评估模型的性能,并选择出最适合当前问题的模型。然而,机器学习领域的发展日新月异,新的模型和评估方法不断涌现。因此,我们需要保持对新技术的学习和关注,不断优化和改进我们的模型选择与评估策略。
|
2月前
|
机器学习/深度学习 人工智能 监控
|
2月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
62 0
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
全面解析TensorFlow Lite:从模型转换到Android应用集成,教你如何在移动设备上轻松部署轻量级机器学习模型,实现高效本地推理
【8月更文挑战第31天】本文通过技术综述介绍了如何使用TensorFlow Lite将机器学习模型部署至移动设备。从创建、训练模型开始,详细演示了模型向TensorFlow Lite格式的转换过程,并指导如何在Android应用中集成该模型以实现预测功能,突显了TensorFlow Lite在资源受限环境中的优势及灵活性。
130 0

推荐镜像

更多