FunAudioLLM大模型SenseVoice和CosyVoice测评

简介: FunAudioLLM大模型SenseVoice和CosyVoice测评

FunAudioLLM包含SenseVoice和CosyVoice两个模型。FunAudioLLM在性能、功能、技术先进性等方面与国际知名语音大模型的比较如下:

性能比较
多语言语音识别:SenseVoice模型支持超过50种语言,特别是在中文和粤语上识别效果优于现有模型。
情感识别:SenseVoice具备优秀的情感识别能力,能够在测试数据上达到和超过目前最佳情感识别模型的效果。
音频事件检测:支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件的检测。
功能比较
语音理解:SenseVoice模型专注于高精度多语言语音识别、情感辨识和音频事件检测。
语音生成:CosyVoice模型专注于自然语音生成,支持多语言、音色和情感控制。
技术先进性
多语言支持:SenseVoice支持多种语言的语音识别,包括SenseVoice-Small支持的5种语言和SenseVoice-Large支持的50多种语言。
低延迟:SenseVoice-Small具有极低的推理延迟,适用于实时语音交互应用。
高精度:SenseVoice-Large支持超过50种语言的语音识别,并具有高精度识别能力。
情感控制:CosyVoice模型能够生成情感丰富的语音,例如快乐、悲伤、愤怒等,并可以通过指令文本进行精细控制。
应用场景
多语言翻译:通过结合SenseVoice、LLMs以及CosyVoice,可以进行无缝的语音到语音的翻译(S2ST)。
情绪语音对话:支持开发一款情感语音聊天应用程序,完成舒适自然的对话交互过程。
互动播客:能够创造一个互动式播客电台,实时捕捉AI播客和用户的对话。
有声读物:实现具有更高表现力的有声读物,让每个故事和角色都栩栩如生。
综上所述,FunAudioLLM在性能、功能、技术先进性等方面表现出色,特别是在多语言支持、低延迟、高精度情感控制等方面具有明显优势。这些特点使得FunAudioLLM在多语言翻译、情绪语音对话、互动播客、有声读物等应用场景中具有较高的实用价值。

SenseVoice大模型评测流程

1. 准备阶段

  • 选定模型:
    • 登录PAI控制台,进入相应工作空间的“快速开始”页面。
    • 通过模型分类信息找到SenseVoice模型,点击进入模型详情页。

2. 极简模式评测

  • 创建评测任务:
    • 在模型评测页面,输入评测任务名称。
    • 选择评测结果的存储路径,确保路径唯一,避免结果覆盖。
    • 选取评测数据集,可选公开数据集或自定义数据集,后者需符合格式要求。
    • 选择GPU类型计算资源(如A10或V100),提交评测任务。

3. 专家模式评测(可选)

  • 高级配置>:
    • 切换至专家模式,可同时选用公开数据集和自定义数据集。
    • 对自定义数据集,可指定question和answer列,直接使用OSS中符合格式的文件。
    • 提交评测任务后,等待任务完成并查看评测报告。

4. 查看评测结果

  • 评测报告获取:
    • 在“快速开始”页面的任务管理标签中,选择“模型评测”查看列表。
    • 点击“查看报告”,在详情页中查看模型在不同数据集上的评测得分,包括ROUGE和BLEU系列指标。

改进意见

  1. 数据集多样性:增加更多行业特定的数据集,以提高评测结果的泛化能力和模型在特定场景下的表现。
  2. 实时监控与反馈:引入实时监控工具,跟踪评测过程中的资源使用情况和模型性能变化,以便及时调整优化策略。
  3. 自定义指标:允许用户根据实际应用场景自定义评测指标,以更准确地评估模型在特定任务上的效能。
  4. 迭代优化建议:评测报告中加入基于评测结果的模型优化建议,比如针对低分指标的特定训练建议。
  5. 资源优化:根据评测结果,提供计算资源使用的优化建议,如调整GPU类型或数量,以平衡性能与成本。

以上流程和建议旨在帮助您高效、全面地评测SenseVoice模型,并根据评测结果进行有效优化。

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
人工智能 测试技术 Java
【中文竞技场】大模型深度体验与测评
简介:本次,我深入体验了中文竞技场中的大语言模型,尝试了写作创作、代码编写和中文游戏三个领域,以下是我详细的评测报告。
350 10
【中文竞技场】大模型深度体验与测评
|
1天前
|
人工智能 自然语言处理 算法
《文档智能 & RAG让AI大模型更懂业务》解决方案的测评:
此解决方案通过文档智能技术分析、处理和结构化业务文档,利用RAG技术整合至LLM知识库,提升AI模型的业务理解和响应准确性。部署文档详尽易懂,适合新手操作。系统在专业领域查询中表现出色,但建议优化冷启动性能和多语言处理能力,以满足更多企业需求。适用于客户服务、内部知识管理和数据分析等场景,特别适合需高效信息检索的大型企业,建议提供不同规模解决方案以适应各类企业。
9 1
|
22天前
|
机器学习/深度学习
自动化机器学习研究MLR-Copilot:利用大型语言模型进行研究加速
【10月更文挑战第21天】在科技快速发展的背景下,机器学习研究面临诸多挑战。为提高研究效率,研究人员提出了MLR-Copilot系统框架,利用大型语言模型(LLM)自动生成和实施研究想法。该框架分为研究想法生成、实验实施和实施执行三个阶段,通过自动化流程显著提升研究生产力。实验结果显示,MLR-Copilot能够生成高质量的假设和实验计划,并显著提高任务性能。然而,该系统仍需大量计算资源和人类监督。
25 4
|
22天前
|
数据采集 人工智能 自然语言处理
《文档智能 & RAG让AI大模型更懂业务》解决方案测评
《文档智能 & RAG让AI大模型更懂业务》解决方案测评
|
2月前
|
存储 算法 API
文档解析(大模型版)能力对比测评
文档解析(大模型版)能力对比测评
207 41
|
2月前
|
自然语言处理 监控 测试技术
FunAudioLLM模型的技术测评
本文旨在对通义语音团队开源的FunAudioLLM模型,特别是SenseVoice和CosyVoice这两个模型进行技术测评,探讨其性能、功能和技术创新等方面的表现,并提出潜在的改进建议。
|
2月前
|
文字识别 算法 API
文档解析(大模型版)能力测评
文档解析(大模型版)能力测评
115 8
|
2月前
|
人工智能 自然语言处理 监控
文档解析(大模型版)能力最佳实践测评
文档解析(大模型版)能力最佳实践测评
68 7
|
4月前
|
机器学习/深度学习 自然语言处理 Ubuntu
FunAudioLLM 技术评测报告
【7月更文第31天】随着人工智能技术的迅速发展,语音识别和语音合成技术已经成为日常生活中不可或缺的一部分。FunAudioLLM 作为一款开源的语音大模型,致力于提供高质量的语音服务,支持多种应用场景。本次评测将重点评估 FunAudioLLM 在性能、功能及技术先进性方面的能力,并将其与国际知名的大规模语音模型进行比较。
143 2
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
AI Native应用中利用联邦学习保障隐私的模型微调实践
【8月更文第2天】随着人工智能技术的发展,越来越多的应用程序开始采用AI原生(AI Native)设计思路,即从一开始就将AI作为核心功能来构建软件和服务。然而,在AI Native应用中,数据隐私和安全性是不容忽视的重要问题。联邦学习(Federated Learning, FL)作为一种新兴的技术框架,为解决这一难题提供了有力的支持。它允许在多个客户端上训练机器学习模型,而无需直接传输原始数据到中心服务器,从而保护了用户的隐私。
136 1