【阿里天池-医学影像报告异常检测】4 机器学习模型调参

简介: 本文提供了对医学影像报告异常检测任务中使用的机器学习模型(如XGBoost和LightGBM)进行参数调整的方法,并分享了特征提取和模型调优的最佳实践。

引言

(1)先对idtdf提取特征的ngram大小和feature调参,最终ngram=(1,2)feature=500,最佳
(2)对LogisticRegression、XGBClassifier、LGBMClassifier三个模型单独调参,本人仅仅对XGB的几个参数进行了调整,工作量太庞大,就没有所有参数调整对比分析。这里仅仅提出调参的例子,提供模型调参的思路学习
(3)开源源码https://github.com/823316627bandeng/TIANCHI-2021-AI-Compition

实现

(1)导入包

import os
import numpy as np
import pandas as pd
from sklearn.decomposition import NMF, TruncatedSVD, PCA
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import StandardScaler
from xgboost import XGBClassifier
from utils import *
from lightgbm import LGBMClassifier
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import roc_auc_score
#加载数据
label= np.array(pd.read_csv('./data/label.csv'))
train = pd.read_csv('./temp/train.csv',header = None,names=['id','text','label'])
adjust_model()

(2)模型的调参

def adjust_model():
    Tdf = TfidfVectorizer(ngram_range=(1,2),max_features=500)
    tdf_data = Tdf.fit_transform(train['text'])
    X_train,X_test,y_train,y_test = train_test_split(tdf_data,label,test_size=0.3)
    paralist = []
    score_dict = {"list_n":[],"list_f":[],"loss":[]}
    # for n in paralist
    param_test1 = {'estimator__max_depth':range(2,8,2)}
    '''
    model = OneVsRestClassifier(XGBClassifier(eval_metric= 'mlogloss',
                                            max_depth = 11,
                                            min_child_weight =1,
                                            use_label_encoder=False,
                                            learning_rate =0.01,
                                            n_estimators=150,
                                            gamma=0,
                                            subsample=0.8,
                                            colsample_bytree=0.8,
                                            nthread=100,
                                            scale_pos_weight=1,
                                            seed=27,
                                            verbose=True
                                            ))
    '''
    '''
    model = OneVsRestClassifier(LGBMClassifier(is_unbalance = True,
                                                metric = 'binary_logloss,auc',
                                                # max_depth = 6,
                                                num_leaves = 40,
                                                learning_rate = 0.1,
                                                feature_fraction = 0.7,
                                                min_child_samples=21,
                                                min_child_weight=0.001,
                                                bagging_fraction = 1,
                                                bagging_freq = 2,
                                                reg_alpha = 0.001,
                                                reg_lambda = 8,
                                                cat_smooth = 0,
                                                # num_iterations = 200
                                                ))
    '''
    # model = OneVsRestClassifier(LGBMClassifier())
    model = OneVsRestClassifier(XGBClassifier(eval_metric= 'mlogloss',use_label_encoder=False,n_estimators=150))
    model.fit(X_train, y_train)

    predict = model.predict_proba(X_test)
    score = roc_auc_score(y_test,predict)
    print(score)

XGB
{‘estimator__max_depth’: 9, ‘estimator__min_child_weight’: 1}
{‘estimator__max_depth’: 11}0.9812110365828264
{‘estimator__n_estimators’: 150} 0.9834881407453535
调参后:0.9726861215062805
LGB
{‘estimator__max_depth’: 6}最佳得分 0.9811430144134826

(3)idtdf提取特征调参

#list_ngram = [1,2,3,4]
#list_feature = [100,200,300,400]
def adjust_idtdf():
    list_ngram = [1,2,3,4,5]
    list_feature = [100,200,300,400,500]
    #分数记录字典
    score_dict = {"list_n":[],"list_f":[],"loss":[]}
    #创建方法进行验证
    def para_Tdf(data_x):
        for n in list_ngram:
            for fea in list_feature:
                Tdf = TfidfVectorizer(ngram_range=(1,n),max_features=fea)
                tdf_data = Tdf.fit_transform(data_x)
                # tdf_data = tdf_data.toarray()
                X_train,X_test,y_train,y_test = train_test_split(tdf_data,label,test_size=0.3)
                model = OneVsRestClassifier(XGBClassifier(eval_metric= 'mlogloss',use_label_encoder=False,n_estimators=50))
                model.fit(X_train, y_train)
                predict = model.predict_proba(X_test)
                loss = Mutilogloss(y_test,predict)
                score_dict["list_n"].append(n)
                score_dict['list_f'].append(fea)
                score_dict['loss'].append(loss)
                print("n={0},feature={1},loss={2}".format(n,fea,loss))
    #方法调用
    para_Tdf(train['text'])
    #以DataFrame形式显示分数
    print(score_dict)

最佳是n=2,features = 500
n=1,feature=100,loss=0.09694388171340544
n=1,feature=200,loss=0.07941648607131963
n=1,feature=300,loss=0.0780516995282797
n=1,feature=400,loss=0.07654529189186797
n=1,feature=500,loss=0.07875673493941672
n=2,feature=100,loss=0.10700796997032506
n=2,feature=200,loss=0.0872626769884241
n=2,feature=300,loss=0.08134605319231948
n=2,feature=400,loss=0.07927331816025636
n=2,feature=500,loss=0.07391725763363112
n=3,feature=100,loss=0.10642417486808319
n=3,feature=200,loss=0.0932806660865527
n=3,feature=300,loss=0.0821267581008504
n=3,feature=400,loss=0.08258777666414407
n=3,feature=500,loss=0.07525704598697901
n=4,feature=100,loss=0.10395870861632356
n=4,feature=200,loss=0.09252871191998951
n=4,feature=300,loss=0.08208295772650118
n=4,feature=400,loss=0.08249975725295985
n=4,feature=500,loss=0.07920155662551372
n=5,feature=100,loss=0.10649166642764825
n=5,feature=200,loss=0.09238465463657325
n=5,feature=300,loss=0.08104836900458223
n=5,feature=400,loss=0.07833574743241475
n=5,feature=500,loss=0.07796380784547806

目录
相关文章
|
4天前
|
机器学习/深度学习 Python
验证集的划分方法:确保机器学习模型泛化能力的关键
本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
12 1
|
16天前
|
机器学习/深度学习 资源调度 分布式计算
阿里PAI-ChatLearn:大规模 Alignment高效训练框架正式开源
PAI-ChatLearn现已全面开源,助力用户快速、高效的Alignment训练体验。借助ChatLearn,用户可全身心投入于模型设计与效果优化,无需分心于底层技术细节。ChatLearn将承担起资源调度、数据传输、参数同步、分布式运行管理以及确保系统高效稳定运作的重任,为用户提供一站式解决方案。
|
12天前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
11天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
87 1
|
15天前
|
机器学习/深度学习 PHP 开发者
探索PHP中的面向对象编程构建你的首个机器学习模型:以Python和scikit-learn为例
【8月更文挑战第30天】在PHP的世界中,面向对象编程(OOP)是一块基石,它让代码更加模块化、易于管理和维护。本文将深入探讨PHP中面向对象的魔法,从类和对象的定义开始,到继承、多态性、封装等核心概念,再到实战中如何应用这些理念来构建更健壮的应用。我们将通过示例代码,一起见证PHP中OOP的魔力,并理解其背后的设计哲学。
|
14天前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
25 1
|
17天前
|
机器学习/深度学习
机器学习回归模型相关重要知识点总结
机器学习回归模型相关重要知识点总结
|
16天前
|
机器学习/深度学习 人工智能 Android开发
揭秘AI编程:从零开始构建你的第一个机器学习模型移动应用开发之旅:从新手到专家
【8月更文挑战第29天】本文将带你走进人工智能的奇妙世界,一起探索如何从零开始构建一个机器学习模型。我们将一步步解析整个过程,包括数据收集、预处理、模型选择、训练和测试等步骤,让你对AI编程有一个全面而深入的理解。无论你是AI初学者,还是有一定基础的开发者,都能在这篇文章中找到你需要的信息和启示。让我们一起开启这段激动人心的AI编程之旅吧! 【8月更文挑战第29天】在这篇文章中,我们将探索移动应用开发的奇妙世界。无论你是刚刚踏入这个领域的新手,还是已经有一定经验的开发者,这篇文章都将为你提供有价值的信息和指导。我们将从基础开始,逐步深入到更复杂的主题,包括移动操作系统的选择、开发工具的使用、
|
19天前
|
机器学习/深度学习 自动驾驶 算法
揭秘机器学习:用Python构建你的首个预测模型
【8月更文挑战第26天】 机器学习,这个听起来既神秘又遥不可及的领域,实际上正悄然改变着我们的世界。从推荐系统到自动驾驶汽车,机器学习技术无处不在。本文将带你走进机器学习的世界,通过一个简单的Python代码示例,展示如何构建一个基本的线性回归模型来预测房价。不需要复杂的数学公式或深奥的理论,我们将以最直观的方式理解机器学习的核心概念。无论你是编程新手还是数据科学爱好者,这篇文章都将为你打开一扇新的大门,让你看到数据背后的力量。