LangChain的LCEL和Runnable你搞懂了吗

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LangChain的LCEL估计行业内的朋友都听过,但是LCEL里的RunnablePassthrough、RunnableParallel、RunnableBranch、RunnableLambda又是什么意思?什么场景下用?

LangChain的LCEL估计行业内的朋友都听过,但是LCEL里的RunnablePassthrough、RunnableParallel、RunnableBranch、RunnableLambda又是什么意思?什么场景下用?

1、LCEL的定义和原理

LangChain的核心是Chain,即对多个组件的一系列调用。

LCEL是LangChain 定义的表达式语言,是一种更加高效简洁的调用一系列组件的方式。

LCEL使用方式就是:以一堆管道符("|")串联所有实现了Runnable接口的组件。

比如这样:

prompt_tpl = ChatPromptTemplate.from_messages(
    [
        ("system", "{parser_instructions}"),
        ("human", "列出{cityName}的{viewPointNum}个著名景点。"),
    ]
)

output_parser = CommaSeparatedListOutputParser()
parser_instructions = output_parser.get_format_instructions()

model = ChatOpenAI(model="gpt-3.5-turbo")

chain = prompt_tpl | model | output_parser

response = chain.invoke(
    {"cityName": "南京", "viewPointNum": 3, "parser_instructions": parser_instructions}
)

所以LangChain为了让组件能以LCEL的方式快速简洁的被调用,计划将所有组件都实现Runnable接口。比如我们常用的PromptTemplateLLMChainStructuredOutputParser 等等。

管道符("|")在Python里就类似or运算(或运算),比如A|B,就是A.or(B)

那对应到LangChain的Runnable接口里,这个or运算是怎么实现的呢?一起看到源码:

LangChain通过or将所有的Runnable串联起来,在通过invoke去一个个执行,上一个组件的输出,作为下一个组件的输入。

LangChain这风格怎么有点像神经网络呀,不得不说,这个世界到处都是相似的草台班子。嗨!

总结起来讲就是:LangChain的每个组件都实现了Runnable,通过LCEL方式,将多个组件串联到一起,最后一个个执行每个组件的invoke方法。上一个组件的输出是下一个组件的输入。

2、Runnable的含义和应用场景

2.1、RunnablePassthrough

定义

RunnablePassthrough 主要用在链中传递数据。RunnablePassthrough一般用在链的第一个位置,用于接收用户的输入。如果处在中间位置,则用于接收上一步的输出。

应用场景

比如,依旧使用上面的例子,接受用户输入的城市,如果输入城市是南京,则替换成北京,其余不变。代码如下。此处的{}RunnablePassthrough.assign()是同一个语义。

chain = (
    {
        "cityName": lambda x: '北京' if x["cityName"] == '南京' else x["cityName"],
        "viewPointNum": lambda x: x["viewPointNum"],
        "parser_instructions": lambda x: x["parser_instructions"],
    }
    | prompt_tpl
    | model
    | output_parser
)

2.2、RunnableParallel

定义

RunnableParallel看名字里的Parallel就猜到一二,用于并行执行多个组件。通过RunnableParallel,可以实现部分组件或所有组件并发执行的需求。

应用场景

比如,同时要执行两个任务,一个列出城市著名景点,一个列出城市著名书籍。

prompt_tpl_1 = ChatPromptTemplate.from_messages(
    [
        ("system", "{parser_instructions}"),
        ("human", "列出{cityName}的{viewPointNum}个著名景点。"),
    ]
)
prompt_tpl_2 = ChatPromptTemplate.from_messages(
    [
        ("system", "{parser_instructions}"),
        ("human", "列出关于{cityName}历史的{viewPointNum}个著名书籍。"),
    ]
)

output_parser = CommaSeparatedListOutputParser()
parser_instructions = output_parser.get_format_instructions()

model = ChatOpenAI(model="gpt-3.5-turbo")

chain_1 = prompt_tpl_1 | model | output_parser
chain_2 = prompt_tpl_2 | model | output_parser
chain_parallel = RunnableParallel(view_point=chain_1, book=chain_2)

response = chain_parallel.invoke(
    {"cityName": "南京", "viewPointNum": 3, "parser_instructions": parser_instructions}
)

2.3、RunnableBranch

定义

RunnableBranch主要用于多分支子链的场景,为链的调用提供了路由功能,这个有点类似于LangChain的路由链。我们可以创建多个子链,然后根据条件选择执行某一个子链。

应用场景

比如,有多个回答问题的链,先根据问题找到分类,然后在使用具体的链回答问题。

model = ChatOpenAI(model="gpt-3.5-turbo")
output_parser = StrOutputParser()

# 准备2条目的链:一条物理链,一条数学链
# 1. 物理链
physics_template = """
你是一位物理学家,擅长回答物理相关的问题,当你不知道问题的答案时,你就回答不知道。
具体问题如下:
{input}
"""
physics_chain = PromptTemplate.from_template(physics_template) | model | output_parser

# 2. 数学链
math_template = """
你是一个数学家,擅长回答数学相关的问题,当你不知道问题的答案时,你就回答不知道。
具体问题如下:
{input}
"""
math_chain = PromptTemplate.from_template(math_template) | model | output_parser

# 4. 其他链
other_template = """
你是一个AI助手,你会回答一下问题。
具体问题如下:
{input}
"""
other_chain = PromptTemplate.from_template(other_template) | model | output_parser


classify_prompt_template = """
请你对以下问题进行分类,将问题分类为"数学"、"物理"、"其它",不需要返回多个分类,返回一个即可。
具体问题如下:
{input}

分类结果:
"""
classify_chain = PromptTemplate.from_template(classify_prompt_template) | model | output_parser

answer_chain = RunnableBranch(
    (lambda x: "数学" in x["topic"], math_chain),
    (lambda x: "物理" in x["topic"], physics_chain),
    other_chain
)

final_chain =  {"topic": classify_chain, "input": itemgetter("input")} | RunnableLambda(print_info) | answer_chain
# final_chain.invoke({"input":"地球的半径是多少?"})
final_chain.invoke({"input":"对y=x求导的结果是多少?"})

2.4、RunnableLambda

定义

要说牛批还得是RunnableLambda,它可以将Python 函数转换为 Runnable对象。这种转换使得任何函数都可以被看作 LCEL 链的一部分,我们把自己需要的功能通过自定义函数 + RunnableLambda的方式包装一下,集成到 LCEL 链中,这样算是可以跟任何外部系统打通了。

应用场景

比如,在执行过程中,想在中间插入一段自定义功能(如 打印日志 等),可以通过自定义函数 + RunnableLambda的方式实现。

def print_info(info: str):
    print(f"info: {info}")
    return info

prompt_tpl_1 = ChatPromptTemplate.from_messages(
    [
        ("system", "{parser_instructions}"),
        ("human", "列出{cityName}的{viewPointNum}个著名景点。"),
    ]
)

output_parser = CommaSeparatedListOutputParser()
parser_instructions = output_parser.get_format_instructions()

model = ChatOpenAI(model="gpt-3.5-turbo")

chain_1 = prompt_tpl_1 | model | RunnableLambda(print_info) | output_parser


response = chain_1.invoke(
    {"cityName": "南京", "viewPointNum": 3, "parser_instructions": parser_instructions}
)

3、总结

本篇主要聊了LangChain的LCEL表达式,以及LangChain链的原理,以及常用的几个Runnable的定义和应用场景,希望对你有帮助。

近期我准备推出一个关于《助力开发者加持AI技术》的专栏,感兴趣的小伙伴可以加微信交流。

本篇完结!欢迎 关注、原文交流!!!

原文链接:https://mp.weixin.qq.com/s/l-EPH0hsmzQousPz8-MXcQ

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
30天前
|
人工智能 前端开发 JavaScript
前端大模型入门(二):掌握langchain的核心Runnable接口
Langchain.js 是 Langchain 框架的 JavaScript 版本,专为前端和后端 JavaScript 环境设计。最新 v0.3 版本引入了强大的 Runnable 接口,支持灵活的执行方式和异步操作,方便与不同模型和逻辑集成。本文将详细介绍 Runnable 接口,并通过实现自定义 Runnable 来帮助前端人员快速上手。
|
6月前
|
数据采集 人工智能 Python
【AI大模型应用开发】【LangChain系列】8. 重要组件介绍:如何运用LangChain表达式语言LCEL中的RunnableParallel和RunnablePassthrough?
【AI大模型应用开发】【LangChain系列】8. 重要组件介绍:如何运用LangChain表达式语言LCEL中的RunnableParallel和RunnablePassthrough?
122 0
|
6月前
|
数据采集 人工智能 数据可视化
【AI大模型应用开发】【LangChain系列】4. 从Chain到LCEL:探索和实战LangChain的巧妙设计
【AI大模型应用开发】【LangChain系列】4. 从Chain到LCEL:探索和实战LangChain的巧妙设计
83 0
|
6月前
|
Shell Android开发
Android系统 adb shell push/pull 禁止特定文件
Android系统 adb shell push/pull 禁止特定文件
544 1
|
6月前
|
Android开发 Python
Python封装ADB获取Android设备wifi地址的方法
Python封装ADB获取Android设备wifi地址的方法
150 0
|
开发工具 Android开发
Mac 安卓(Android) 配置adb路径
Mac 安卓(Android) 配置adb路径
830 0
|
3月前
|
Shell Linux 开发工具
"开发者的救星:揭秘如何用adb神器征服Android设备,开启高效调试之旅!"
【8月更文挑战第20天】Android Debug Bridge (adb) 是 Android 开发者必备工具,用于实现计算机与 Android 设备间通讯,执行调试及命令操作。adb 提供了丰富的命令行接口,覆盖从基础设备管理到复杂系统操作的需求。本文详细介绍 adb 的安装配置流程,并列举实用命令示例,包括设备连接管理、应用安装调试、文件系统访问等基础功能,以及端口转发、日志查看等高级技巧。此外,还提供了常见问题的故障排除指南,帮助开发者快速解决问题。掌握 adb 将极大提升 Android 开发效率,助力项目顺利推进。
87 0
|
6月前
|
Shell Android开发
ADB更改Android设备屏幕显示方向
ADB更改Android设备屏幕显示方向
345 5
|
6月前
|
Java Android开发
Android 对adb命令的拦截
Android 对adb命令的拦截
95 2
|
5月前
|
Shell 开发工具 Android开发