从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路

简介: 【7月更文挑战第31天】

问题一:作为数据小白,我该如何入门Python数据分析?

答:要从数据小白成长为AI专家,Python数据分析是不可或缺的第一步。首先,你需要掌握Python的基础语法,包括变量、条件语句、循环、函数等。接着,学习NumPy和Pandas这两个库至关重要。NumPy提供了高性能的多维数组对象及这些数组的操作,而Pandas则是数据分析和操作的神器,能够轻松处理CSV、Excel等文件,并进行数据清洗、筛选、分组等操作。

python
import pandas as pd

加载数据

data = pd.read_csv('example.csv')

查看数据前几行

print(data.head())

数据清洗示例:删除缺失值

cleaned_data = data.dropna()

数据分组并计算平均值

grouped = cleaned_data.groupby('category').mean()
print(grouped)
问题二:如何进一步学习并利用Python进行数据可视化?

答:数据可视化是数据分析的重要组成部分,它能直观地展示数据背后的故事。Matplotlib和Seaborn是Python中非常流行的可视化库。Matplotlib提供了底层的绘图系统,而Seaborn则基于Matplotlib,提供了更高层次的接口,让绘图更加简单美观。

python
import seaborn as sns

使用Seaborn绘制直方图

sns.histplot(cleaned_data['sales'], kde=True)

绘制散点图查看两个变量间的关系

sns.scatterplot(x='price', y='sales', data=cleaned_data)
问题三:如何从数据分析过渡到深度学习,特别是使用TensorFlow或PyTorch?

答:当你对数据有了足够的理解后,就可以开始向深度学习迈进。TensorFlow和PyTorch是当前最流行的两个深度学习框架。它们提供了丰富的API,使得构建和训练神经网络变得简单。

以TensorFlow为例,你可以从一个简单的线性回归模型开始:

python
import tensorflow as tf

构建模型

model = tf.keras.Sequential([
tf.keras.layers.Dense(1, input_shape=(1,))
])

编译模型

model.compile(optimizer='sgd', loss='mean_squared_error')

假设X_train和y_train是你的特征集和标签集

这里使用随机数据作为示例

import numpy as np
X_train = np.array([[1], [2], [3], [4], [5]])
y_train = np.array([1, 2, 3, 4, 5])

训练模型

model.fit(X_train, y_train, epochs=100)

使用模型进行预测

predictions = model.predict(np.array([[6]]))
print(predictions)
PyTorch的代码风格略有不同,但同样强大灵活。从数据分析到深度学习的转变,关键在于理解数据的深层结构,并掌握如何利用神经网络来捕捉这些结构中的规律。

总结:从数据小白到AI专家的蜕变之路,不仅需要扎实的数据分析基础,还需要不断学习和实践深度学习技术。通过Python这个强大的工具,结合NumPy、Pandas、Matplotlib/Seaborn进行数据分析与可视化,再进一步探索TensorFlow或PyTorch等深度学习框架,你将能够解锁数据的无限潜力,为解决复杂问题提供新的视角和方法。

目录
相关文章
|
20天前
|
机器学习/深度学习 缓存 数据处理
《零基础实践深度学习》2.3.3 校验数据有效性 基于飞桨Dataset和DataLoader API完成数据处理
这篇文章详细介绍了在深度学习任务中进行数据处理的步骤,包括数据校验、封装数据读取与处理函数、使用飞桨Dataset和DataLoader API完成数据加载,以及数据增强/增广的方法和实践,旨在确保数据的有效性和提高模型训练效果。
|
17天前
|
存储 消息中间件 人工智能
AI大模型独角兽 MiniMax 基于阿里云数据库 SelectDB 版内核 Apache Doris 升级日志系统,PB 数据秒级查询响应
早期 MiniMax 基于 Grafana Loki 构建了日志系统,在资源消耗、写入性能及系统稳定性上都面临巨大的挑战。为此 MiniMax 开始寻找全新的日志系统方案,并基于阿里云数据库 SelectDB 版内核 Apache Doris 升级了日志系统,新系统已接入 MiniMax 内部所有业务线日志数据,数据规模为 PB 级, 整体可用性达到 99.9% 以上,10 亿级日志数据的检索速度可实现秒级响应。
AI大模型独角兽 MiniMax 基于阿里云数据库 SelectDB 版内核 Apache Doris 升级日志系统,PB 数据秒级查询响应
|
1天前
|
人工智能 安全 API
AI数据荒雪上加霜!MIT:网页数据的公开共享正走向衰落
【9月更文挑战第7天】麻省理工学院的一项新研究表明,尽管人工智能(AI)领域迅速发展,但网页数据的公开共享正在减少,加剧了AI数据短缺的问题。AI模型训练依赖大量数据,而网页数据是关键来源之一,其共享减少将影响AI进步,并引发数据隐私和安全方面的担忧。然而,这也推动了对数据隐私保护的关注及新型数据获取方式的探索。研究详情参见:[论文链接](https://www.dataprovenance.org/consent-in-crisis-paper)。
25 9
|
3天前
|
SQL 人工智能 运维
在阿里云日志服务轻松落地您的AI模型服务——让您的数据更容易产生洞见和实现价值
您有大量的数据,数据的存储和管理消耗您大量的成本,您知道这些数据隐藏着巨大的价值,但是您总觉得还没有把数据的价值变现出来,对吗?来吧,我们用一系列的案例帮您轻松落地AI模型服务,实现数据价值的变现......
24 3
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术性文章移动应用开发之旅:从新手到专家的蜕变之路
【8月更文挑战第30天】本文将介绍人工智能的基本原理和应用,包括机器学习、深度学习和自然语言处理等。我们将通过代码示例来展示如何使用Python和TensorFlow库实现一个简单的神经网络模型。
|
10天前
|
机器学习/深度学习 人工智能 Android开发
揭秘AI编程:从零开始构建你的第一个机器学习模型移动应用开发之旅:从新手到专家
【8月更文挑战第29天】本文将带你走进人工智能的奇妙世界,一起探索如何从零开始构建一个机器学习模型。我们将一步步解析整个过程,包括数据收集、预处理、模型选择、训练和测试等步骤,让你对AI编程有一个全面而深入的理解。无论你是AI初学者,还是有一定基础的开发者,都能在这篇文章中找到你需要的信息和启示。让我们一起开启这段激动人心的AI编程之旅吧! 【8月更文挑战第29天】在这篇文章中,我们将探索移动应用开发的奇妙世界。无论你是刚刚踏入这个领域的新手,还是已经有一定经验的开发者,这篇文章都将为你提供有价值的信息和指导。我们将从基础开始,逐步深入到更复杂的主题,包括移动操作系统的选择、开发工具的使用、
|
10天前
|
机器学习/深度学习 PyTorch TensorFlow
TensorFlow和PyTorch的实际应用比较
TensorFlow和PyTorch的实际应用比较
|
14天前
|
机器学习/深度学习 自然语言处理 数据处理
深度学习的数据增强
基于深度学习的数据增强技术旨在通过生成或变换现有数据,来提高模型的泛化能力和鲁棒性。数据增强在图像、文本、语音等各种类型的数据处理中都起着至关重要的作用。
30 1
|
22天前
|
存储 边缘计算 人工智能
【边缘计算与AI】分析边缘计算在处理AI任务、优化响应速度和数据隐私保护方面的作用和潜力
边缘计算与AI的结合是当前技术发展的重要趋势,两者相互依存、相互促进,共同推动着数字化转型的深入发展。以下是对边缘计算与AI关系的详细分析
51 6
|
17天前
|
存储 人工智能
就AI 基础设施的演进与挑战问题之当Znode数据变更时会发生什么
就AI 基础设施的演进与挑战问题之当Znode数据变更时会发生什么

热门文章

最新文章

下一篇
DDNS