Redis 与 Scrapy:无缝集成的分布式爬虫技术

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: Redis 与 Scrapy:无缝集成的分布式爬虫技术
  1. 分布式爬虫的概念
    分布式爬虫系统通过将任务分配给多个爬虫节点,利用集群的计算能力来提高数据抓取的效率。这种方式不仅可以提高爬取速度,还可以在单个节点发生故障时,通过其他节点继续完成任务,从而提高系统的稳定性和可靠性。
  2. Scrapy 简介
    Scrapy 是一个用于快速抓取 web 数据的 Python 框架。它提供了一个异步处理的架构,可以轻松地处理大规模数据抓取任务。Scrapy 的主要特点包括:
    ● 异步处理:利用 Twisted 异步网络库,Scrapy 可以同时处理多个请求,提高数据抓取的效率。
    ● 强大的选择器:Scrapy 使用 lxml 或 cssselect 作为选择器,可以方便地从 HTML/XML 页面中提取数据。
    ● 中间件支持:Scrapy 支持下载中间件和蜘蛛中间件,允许开发者在请求和响应处理过程中插入自定义逻辑。
    ● 扩展性:Scrapy 可以轻松地与各种存储后端(如数据库、文件系统)集成。
  3. Redis 简介
    Redis 是一个开源的内存数据结构存储系统,用作数据库、缓存和消息中间件。它支持多种类型的数据结构,如字符串、哈希、列表、集合等。Redis 的主要特点包括:
    ● 高性能:Redis 的数据存储在内存中,读写速度快。
    ● 高可用性:通过主从复制和哨兵系统,Redis 可以提供高可用性。
    ● 数据持久化:Redis 支持 RDB 和 AOF 两种持久化方式,确保数据的安全性。
    ● 丰富的数据类型:Redis 支持字符串、列表、集合、有序集合、散列等多种数据类型。
  4. Scrapy-Redis 架构
    Scrapy-Redis 是 Scrapy 与 Redis 的集成库,它将 Scrapy 的爬虫任务和结果存储在 Redis 中。这种架构的主要优势包括:
    ● 分布式处理:通过 Redis,Scrapy-Redis 可以将爬虫任务分配到多个爬虫节点,实现分布式处理。
    ● 去重:利用 Redis 的集合数据类型,Scrapy-Redis 可以轻松实现 URL 的去重。
    ● 任务队列:Redis 作为任务队列,可以存储待抓取的 URL,避免重复抓取。
  5. Scrapy-Redis 组件
    Scrapy-Redis 架构主要由以下几个组件构成:
    ● Redis 服务器:作为数据存储和任务队列的后端。
    ● Scrapy 爬虫:执行实际的数据抓取任务。
    ● Scrapy-Redis 扩展:提供 Scrapy 与 Redis 之间的集成功能。
  6. 实现 Scrapy-Redis 架构
    以下是实现 Scrapy-Redis 架构的基本步骤和示例代码:
    首先,需要安装 Scrapy 和 Scrapy-Redis。可以通过 pip 安装.
    在 Scrapy 项目的 settings.py 文件中。
    接下来,定义一个 Scrapy 爬虫,并使用 Redis 存储爬取结果。
    ```import scrapy
    from scrapy import Request
    from scrapy.utils.project import get_project_settings
    from scrapy.exceptions import NotConfigured
    from twisted.internet import reactor
    from twisted.internet.error import TimeoutError
    from twisted.internet.defer import inlineCallbacks
    from scrapy.http import HtmlResponse
    from scrapy.utils.response import response_status_message

from scrapy_redis.spiders import RedisSpider

class ProxyMiddleware(object):
def init(self, proxyHost, proxyPort, proxyUser, proxyPass):
self.proxyHost = proxyHost
self.proxyPort = proxyPort
self.proxyUser = proxyUser
self.proxyPass = proxyPass

@classmethod
def from_crawler(cls, crawler):
    settings = crawler.settings
    return cls(
        proxyHost=settings.get('PROXY_HOST'),
        proxyPort=settings.get('PROXY_PORT'),
        proxyUser=settings.get('PROXY_USER'),
        proxyPass=settings.get('PROXY_PASS')
    )

def process_request(self, request, spider):
    proxy = f"{self.proxyUser}:{self.proxyPass}@{self.proxyHost}:{self.proxyPort}"
    request.meta['proxy'] = proxy

class MySpider(RedisSpider):
name = 'example'
redis_key = 'example:start_urls'

def start_requests(self):
    yield scrapy.Request(url=self.start_urls[0], callback=self.parse)

def parse(self, response):
    for href in response.css('a::attr(href)').getall():
        yield response.follow(href, self.parse_item)

def parse_item(self, response):
    item = {
        'domain_id': response.url,
        'domain_name': response.url,
    }
    yield item

settings.py

ITEM_PIPELINES = {
'scrapy_redis.pipelines.RedisPipeline': 300,
}

DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'

SCHEDULER = 'scrapy_redis.scheduler.Scheduler'

SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.SpiderQueue'
SCHEDULER_QUEUE_LIMIT = 10000

REDIS_URL = 'redis://localhost:6379'

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.ProxyMiddleware': 100,
}

PROXY_HOST = "www.16yun.cn"
PROXY_PORT = "5445"
PROXY_USER = "16QMSOML"
PROXY_PASS = "280651"
```
7.结论
Scrapy-Redis 架构通过将 Scrapy 的爬虫任务和结果存储在 Redis 中,实现了高效的数据抓取。这种架构不仅提高了数据抓取的效率,还增强了系统的可扩展性和稳定性。通过合理的配置和优化,可以进一步发挥 Scrapy-Redis 架构的优势,满足大规模数据抓取的需求。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
传感器 人工智能 算法
聚焦“以技术集成支撑单亩价值创造”与“增加值分配机制区块链存证确权”两大核心本质
“振兴链-技术集成科技小院”以技术集成与区块链为核心,推动农业现代化。通过多维度技术整合(如精准农业、物联网等),突破资源约束,最大化单亩产值;同时利用区块链确权存证,建立透明分配机制,解决传统农业中收益不均问题。技术赋能生产,制度重塑分配,实现效率与公平的平衡,助力乡村振兴与产业升级。典型场景显示,该模式可显著提升单亩价值并确保增值公平分配。
|
3月前
|
数据采集 前端开发 JavaScript
Scrapy结合Selenium实现搜索点击爬虫的最佳实践
Scrapy结合Selenium实现搜索点击爬虫的最佳实践
|
4月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
401 0
分布式爬虫框架Scrapy-Redis实战指南
|
4月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
|
4月前
|
NoSQL Java 关系型数据库
微服务——SpringBoot使用归纳——Spring Boot 中集成Redis——Redis 介绍
本文介绍在 Spring Boot 中集成 Redis 的方法。Redis 是一种支持多种数据结构的非关系型数据库(NoSQL),具备高并发、高性能和灵活扩展的特点,适用于缓存、实时数据分析等场景。其数据以键值对形式存储,支持字符串、哈希、列表、集合等类型。通过将 Redis 与 Mysql 集群结合使用,可实现数据同步,提升系统稳定性。例如,在网站架构中优先从 Redis 获取数据,故障时回退至 Mysql,确保服务不中断。
150 0
微服务——SpringBoot使用归纳——Spring Boot 中集成Redis——Redis 介绍
|
2月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
228 67
|
2月前
|
安全 JavaScript 前端开发
HarmonyOS NEXT~HarmonyOS 语言仓颉:下一代分布式开发语言的技术解析与应用实践
HarmonyOS语言仓颉是华为专为HarmonyOS生态系统设计的新型编程语言,旨在解决分布式环境下的开发挑战。它以“编码创造”为理念,具备分布式原生、高性能与高效率、安全可靠三大核心特性。仓颉语言通过内置分布式能力简化跨设备开发,提供统一的编程模型和开发体验。文章从语言基础、关键特性、开发实践及未来展望四个方面剖析其技术优势,助力开发者掌握这一新兴工具,构建全场景分布式应用。
296 35
|
1月前
|
数据采集 Web App开发 JavaScript
无头浏览器技术:Python爬虫如何精准模拟搜索点击
无头浏览器技术:Python爬虫如何精准模拟搜索点击
|
3月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
|
2月前
|
传感器 供应链 物联网
农业单亩价值创造功能技术集成的概念与内涵
农业单亩价值创造的技术集成,通过系统性创新打破传统单一模式,融合现代科技与生态理念,提升资源效率、经济效益和生态价值。其核心在于技术协同,实现精准农业、智能装备和生物强化等多维联动,推动经济、生态和社会价值统一。同时,注重资源集约化与循环化利用,延伸产业链并升级价值链,从短期高产转向长期可持续发展。政策与制度创新支撑技术普惠,未来需因地制宜解决技术适配性和成本收益平衡问题,重塑农业评价体系,实现高质量发展。

热门文章

最新文章