Redis 与 Scrapy:无缝集成的分布式爬虫技术

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: Redis 与 Scrapy:无缝集成的分布式爬虫技术
  1. 分布式爬虫的概念
    分布式爬虫系统通过将任务分配给多个爬虫节点,利用集群的计算能力来提高数据抓取的效率。这种方式不仅可以提高爬取速度,还可以在单个节点发生故障时,通过其他节点继续完成任务,从而提高系统的稳定性和可靠性。
  2. Scrapy 简介
    Scrapy 是一个用于快速抓取 web 数据的 Python 框架。它提供了一个异步处理的架构,可以轻松地处理大规模数据抓取任务。Scrapy 的主要特点包括:
    ● 异步处理:利用 Twisted 异步网络库,Scrapy 可以同时处理多个请求,提高数据抓取的效率。
    ● 强大的选择器:Scrapy 使用 lxml 或 cssselect 作为选择器,可以方便地从 HTML/XML 页面中提取数据。
    ● 中间件支持:Scrapy 支持下载中间件和蜘蛛中间件,允许开发者在请求和响应处理过程中插入自定义逻辑。
    ● 扩展性:Scrapy 可以轻松地与各种存储后端(如数据库、文件系统)集成。
  3. Redis 简介
    Redis 是一个开源的内存数据结构存储系统,用作数据库、缓存和消息中间件。它支持多种类型的数据结构,如字符串、哈希、列表、集合等。Redis 的主要特点包括:
    ● 高性能:Redis 的数据存储在内存中,读写速度快。
    ● 高可用性:通过主从复制和哨兵系统,Redis 可以提供高可用性。
    ● 数据持久化:Redis 支持 RDB 和 AOF 两种持久化方式,确保数据的安全性。
    ● 丰富的数据类型:Redis 支持字符串、列表、集合、有序集合、散列等多种数据类型。
  4. Scrapy-Redis 架构
    Scrapy-Redis 是 Scrapy 与 Redis 的集成库,它将 Scrapy 的爬虫任务和结果存储在 Redis 中。这种架构的主要优势包括:
    ● 分布式处理:通过 Redis,Scrapy-Redis 可以将爬虫任务分配到多个爬虫节点,实现分布式处理。
    ● 去重:利用 Redis 的集合数据类型,Scrapy-Redis 可以轻松实现 URL 的去重。
    ● 任务队列:Redis 作为任务队列,可以存储待抓取的 URL,避免重复抓取。
  5. Scrapy-Redis 组件
    Scrapy-Redis 架构主要由以下几个组件构成:
    ● Redis 服务器:作为数据存储和任务队列的后端。
    ● Scrapy 爬虫:执行实际的数据抓取任务。
    ● Scrapy-Redis 扩展:提供 Scrapy 与 Redis 之间的集成功能。
  6. 实现 Scrapy-Redis 架构
    以下是实现 Scrapy-Redis 架构的基本步骤和示例代码:
    首先,需要安装 Scrapy 和 Scrapy-Redis。可以通过 pip 安装.
    在 Scrapy 项目的 settings.py 文件中。
    接下来,定义一个 Scrapy 爬虫,并使用 Redis 存储爬取结果。
    ```import scrapy
    from scrapy import Request
    from scrapy.utils.project import get_project_settings
    from scrapy.exceptions import NotConfigured
    from twisted.internet import reactor
    from twisted.internet.error import TimeoutError
    from twisted.internet.defer import inlineCallbacks
    from scrapy.http import HtmlResponse
    from scrapy.utils.response import response_status_message

from scrapy_redis.spiders import RedisSpider

class ProxyMiddleware(object):
def init(self, proxyHost, proxyPort, proxyUser, proxyPass):
self.proxyHost = proxyHost
self.proxyPort = proxyPort
self.proxyUser = proxyUser
self.proxyPass = proxyPass

@classmethod
def from_crawler(cls, crawler):
    settings = crawler.settings
    return cls(
        proxyHost=settings.get('PROXY_HOST'),
        proxyPort=settings.get('PROXY_PORT'),
        proxyUser=settings.get('PROXY_USER'),
        proxyPass=settings.get('PROXY_PASS')
    )

def process_request(self, request, spider):
    proxy = f"{self.proxyUser}:{self.proxyPass}@{self.proxyHost}:{self.proxyPort}"
    request.meta['proxy'] = proxy

class MySpider(RedisSpider):
name = 'example'
redis_key = 'example:start_urls'

def start_requests(self):
    yield scrapy.Request(url=self.start_urls[0], callback=self.parse)

def parse(self, response):
    for href in response.css('a::attr(href)').getall():
        yield response.follow(href, self.parse_item)

def parse_item(self, response):
    item = {
        'domain_id': response.url,
        'domain_name': response.url,
    }
    yield item

settings.py

ITEM_PIPELINES = {
'scrapy_redis.pipelines.RedisPipeline': 300,
}

DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'

SCHEDULER = 'scrapy_redis.scheduler.Scheduler'

SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.SpiderQueue'
SCHEDULER_QUEUE_LIMIT = 10000

REDIS_URL = 'redis://localhost:6379'

DOWNLOADER_MIDDLEWARES = {
'myproject.middlewares.ProxyMiddleware': 100,
}

PROXY_HOST = "www.16yun.cn"
PROXY_PORT = "5445"
PROXY_USER = "16QMSOML"
PROXY_PASS = "280651"
```
7.结论
Scrapy-Redis 架构通过将 Scrapy 的爬虫任务和结果存储在 Redis 中,实现了高效的数据抓取。这种架构不仅提高了数据抓取的效率,还增强了系统的可扩展性和稳定性。通过合理的配置和优化,可以进一步发挥 Scrapy-Redis 架构的优势,满足大规模数据抓取的需求。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
12天前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
33 2
基于Redis的高可用分布式锁——RedLock
|
20天前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
20天前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解、如何添加锁解决缓存击穿问题?分布式情况下如何添加分布式锁
这篇文章介绍了如何在SpringBoot项目中整合Redis,并探讨了缓存穿透、缓存雪崩和缓存击穿的问题以及解决方法。文章还提供了解决缓存击穿问题的加锁示例代码,包括存在问题和问题解决后的版本,并指出了本地锁在分布式情况下的局限性,引出了分布式锁的概念。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解、如何添加锁解决缓存击穿问题?分布式情况下如何添加分布式锁
|
11天前
|
数据采集 中间件 调度
Scrapy 爬虫框架的基本使用
Scrapy 爬虫框架的基本使用
|
20天前
|
NoSQL 安全 Java
nicelock--一个注解即可使用Redis分布式锁!
Nicelock的引入为分布式系统中的资源同步访问提供了一个简单高效和可靠的解决方案。通过注解的方式,简化了锁的实现和使用,使开发人员可以将更多精力专注于业务逻辑的实现,而不是锁的管理。此外,Nicelock在保持简单易用的同时,也提供了足够的灵活性和可靠性,满足了不同应用场景下对分布式锁的需求。
28 1
|
1月前
|
缓存 NoSQL 关系型数据库
(八)漫谈分布式之缓存篇:唠唠老生常谈的MySQL与Redis数据一致性问题!
本文来聊一个跟实际工作挂钩的老生常谈的问题:分布式系统中的缓存一致性。
99 10
|
12天前
|
NoSQL Go Redis
用 Go + Redis 实现分布式锁
用 Go + Redis 实现分布式锁
|
1月前
|
NoSQL Java Redis
Spring Boot集成Redis全攻略:高效数据存取,打造性能飞跃的Java微服务应用!
【8月更文挑战第3天】Spring Boot是备受欢迎的微服务框架,以其快速开发与轻量特性著称。结合高性能键值数据库Redis,可显著增强应用性能。集成步骤包括:添加`spring-boot-starter-data-redis`依赖,配置Redis服务器参数,注入`RedisTemplate`或`StringRedisTemplate`进行数据操作。这种集成方案适用于缓存、高并发等场景,有效提升数据处理效率。
169 2
|
2月前
|
NoSQL 算法 Java
(十三)全面理解并发编程之分布式架构下Redis、ZK分布式锁的前世今生
本文探讨了从单体架构下的锁机制到分布式架构下的线程安全问题,并详细分析了分布式锁的实现原理和过程。
|
15天前
|
缓存 NoSQL 网络安全
【Azure Redis 缓存】Redis连接无法建立问题的排查(注:Azure Redis集成在VNET中)
【Azure Redis 缓存】Redis连接无法建立问题的排查(注:Azure Redis集成在VNET中)

热门文章

最新文章

下一篇
DDNS