Python教程:json中load和loads的区别

简介: 【7月更文挑战第17天】在Python的`json`模块中, `load`与`loads`函数均用于JSON至Python对象的转换, 区别在于:- **`loads`**处理JSON格式的**字符串** 其中`data.json`文件内容为`{"name": "Bob", "age": 30}`。简而言之, `loads`用于字符串, 而`load`用于文件对象。根据数据来源选择合适的方法。

在 Python 中,json 模块中的 loadloads 函数都用于将 JSON 格式的数据转换为 Python 对象,但它们有以下区别:


loads 函数


loads 函数用于将一个 JSON 格式的字符串转换为 Python 对象。


示例:


import json
json_str = '{"name": "Alice", "age": 25}'
data = json.loads(json_str)
print(data)


load 函数


load 函数用于从一个文件对象中读取 JSON 数据,并将其转换为 Python 对象。


示例:


import json
with open('data.json', 'r') as f:
    data = json.load(f)
print(data)


假设我们有一个名为 data.json 的文件,内容如下:


{"name": "Bob", "age": 30}


总的来说,loads 操作的是字符串,而 load 操作的是文件对象。在实际使用中,根据数据的来源选择使用哪个函数。如果数据是以字符串形式存在的,就使用 loads;如果数据存储在文件中,就使用 load 来读取并转换。

相关文章
|
12天前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
1天前
|
数据采集 JSON 测试技术
如何在Python中高效实现CSV到JSON的数据转换
在实际项目中,数据格式转换是常见问题,尤其从CSV到JSON的转换。本文深入探讨了多种转换方法,涵盖Python基础实现、数据预处理、错误处理、性能优化及调试验证技巧。通过分块处理、并行处理等手段提升大文件转换效率,并介绍如何封装为命令行工具或Web API,实现自动化批量处理。关键点包括基础实现、数据清洗、异常捕获、性能优化和单元测试,确保转换流程稳定高效。
102 82
|
23天前
|
IDE 测试技术 项目管理
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
206 13
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
|
3月前
|
存储 开发者 Python
Python 中的数据结构与其他编程语言数据结构的区别
不同编程语言都有其设计理念和应用场景,开发者需要根据具体需求和语言特点来选择合适的数据结构
119 55
|
2月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
87 8
|
2月前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
155 7
|
2月前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
58 4
|
2月前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
64 5
|
3月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
46 1
|
3月前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
48 1

热门文章

最新文章