本文为博主原创,转载请注明出处:
目录:
一。快速理解前序,中序,后序遍历的区别
二。使用递归的方式实现前序,中序,后序遍历
三。 使用迭代的方式实现前序 中序 后序遍历
四。层序遍历
一。快速理解前序,中序,后序遍历的区别
前序遍历:根左右(根在前,从左往右,一棵树的根永远在左子树前面,左子树又永远在右子树前面 )
中序遍历:左根右(根在中,从左往右,一棵树的左子树永远在根前面,根永远在右子树前面)
后序遍历:左右根(根在后,从左往右,一棵树的左子树永远在右子树前面,右子树永远在根前面)
参考一张图可以快速理解三种遍历的顺序
二。使用递归的方式实现前序,中序,后序遍历
package com.example.test.tree; public class TreeNode { // 树的根结点值 int val; // 根节点对应的左节点 TreeNode left = null; // 根节点对应的右节点 TreeNode right = null; public TreeNode(int val){ this.val = val; } /** * 树的前序便利:根节点--〉左节点---〉右节点 * @param root */ public static void preOrder(TreeNode root) { if (root == null) { return; } System.out.print(root.val + " "); preOrder(root.left); preOrder(root.right); } /** * 树的中序遍历 : 左节点--〉中节点 --〉 右节点 * @param root */ public static void middleOrder(TreeNode root){ if (root ==null){return;} middleOrder(root.left); System.out.print(root.val+ " "); middleOrder(root.right); } /** * 树的后序遍历: 左节点--〉右节点 --> 根节点 * @param root */ public static void afterOrder(TreeNode root){ if (root == null){return;} afterOrder(root.left); afterOrder(root.right); System.out.print(root.val+ " "); } public static void main(String[] args) { TreeNode root = new TreeNode(20); TreeNode node1 = new TreeNode(4); TreeNode node2 = new TreeNode(5); TreeNode node3 = new TreeNode(8); TreeNode node4 = new TreeNode(2); TreeNode node5 = new TreeNode(7); TreeNode node6 = new TreeNode(12); TreeNode node7 = new TreeNode(3); TreeNode node8 = new TreeNode(9); root.left = node1; root.right = node2; node1.left = node3; node1.right = node4; node2.left = node5; node2.right = node6; node3.left = node7; node4.right = node8; preOrder(root); System.out.println(); middleOrder(root); System.out.println(); afterOrder(root); } }
三。 使用迭代的方式实现前序 中序 后序遍历
package com.example.test.tree; import java.util.Stack; public class TreeNode { // 树的根结点值 int val; // 根节点对应的左节点 TreeNode left = null; // 根节点对应的右节点 TreeNode right = null; public TreeNode(int val) { this.val = val; } /** * 前序遍历:使用stack 记录递归路径,须保证左子节点先出栈 * * @param root */ public static void preOrder2(TreeNode root) { if (root != null) { Stack<TreeNode> stack = new Stack<>(); stack.add(root); while (!stack.isEmpty()) { root = stack.pop(); if (root != null) { System.out.print(root.val + " "); stack.push(root.right); stack.push(root.left); } } } } /** * 中序遍历:将左子节点入栈,出栈打印值,然后添加右子节点 * * @param root */ public static void middleOrder2(TreeNode root) { if (root != null) { Stack<TreeNode> stack = new Stack<>(); while (!stack.isEmpty() || root != null) if (root != null) { stack.push(root); root = root.left; } else { root = stack.pop(); System.out.print(root.val + " "); root = root.right; } } } /** * 后序遍历 * @param root */ public void afterOrder2(TreeNode root) { TreeNode cur, pre = null; Stack<TreeNode> stack = new Stack<>(); stack.push(root); while (!stack.empty()) { cur = stack.peek(); if ((cur.left == null && cur.right == null) || (pre != null && (pre == cur.left || pre == cur.right))) { System.out.print(cur.val + "->"); stack.pop(); pre = cur; } else { if (cur.right != null) stack.push(cur.right); if (cur.left != null) stack.push(cur.left); } } } public static void main(String[] args) { TreeNode root = new TreeNode(20); TreeNode node1 = new TreeNode(4); TreeNode node2 = new TreeNode(5); TreeNode node3 = new TreeNode(8); TreeNode node4 = new TreeNode(2); TreeNode node5 = new TreeNode(7); TreeNode node6 = new TreeNode(12); TreeNode node7 = new TreeNode(3); TreeNode node8 = new TreeNode(9); root.left = node1; root.right = node2; node1.left = node3; node1.right = node4; node2.left = node5; node2.right = node6; node3.left = node7; node4.right = node8; preOrder2(root); System.out.println(); middleOrder2(root); System.out.println(); afterOrder2(root); } }
四。层序遍历
/** * 层序遍历 * @param root */ public static void levelOrder(TreeNode root) { if (root == null) { return; } Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.add(root); while (!queue.isEmpty()) { TreeNode node = queue.poll(); System.out.print(node.val + "->"); if (node.left != null) { queue.add(node.left); } if (node.right != null) { queue.add(node.right); } } }
标签: 算法与数据结构