深入理解Kafka核心设计及原理(六):Controller选举机制,分区副本leader选举机制,再均衡机制

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 深入理解Kafka核心设计及原理(六):Controller选举机制,分区副本leader选举机制,再均衡机制

转载请注明出处:https://www.cnblogs.com/zjdxr-up/p/15026824.html

  目录: 

    6.1.Kafka核心总控制器Controller

    6.2.Controller选举机制

    6.3.Partition副本选举Leader机制

    6.4.消费者消费消息的offset记录机制

    6.5.消费者Rebalance机制

    6.6.消费者Rebalance分区分配策略


kafka 集群拓扑结构:

  

6.1.Kafka核心总控制器Controller

  在Kafka集群中会有一个或者多个broker,其中有一个broker会被选举为控制器(Kafka Controller),它负责管理整个集群中所有分区和副本的状态

    当某个分区的leader副本出现故障时,由控制器负责为该分区选举新的leader副本。

    当检测到某个分区的ISR集合发生变化时,由控制器负责通知所有broker更新其元数据信息。

    当使用kafka-topics.sh脚本为某个topic增加分区数量时,同样还是由控制器负责分区的重新分配。

6.2.Controller选举机制

    在kafka集群启动的时候,会自动选举一台broker作为controller来管理整个集群,选举的过程是集群中每个broker都会尝试在zookeeper上创建一个 /controller 临时节点,zookeeper会保证有且仅有一个broker能创建成功,这个broker就会成为集群的总控器controller。

    当这个controller角色的broker宕机了,此时zookeeper临时节点会消失,集群里其他broker会一直监听这个临时节点,发现临时节点消失了,就竞争再次创建临时节点,就是我们上面说的选举机制,zookeeper又会保证有一个broker成为新的controller。

    具备控制器身份的broker需要比其他普通的broker多一份职责,具体细节如下:

    1. 监听broker相关的变化。为Zookeeper中的/brokers/ids/节点添加BrokerChangeListener,用来处理broker增减的变化。

    2. 监听topic相关的变化。为Zookeeper中的/brokers/topics节点添加TopicChangeListener,用来处理topic增减的变化;为Zookeeper中的/admin/delete_topics节点添加TopicDeletionListener,用来处理删除topic的动作。

    3. 从Zookeeper中读取获取当前所有与topic、partition以及broker有关的信息并进行相应的管理。对于所有topic所对应的Zookeeper中的/brokers/topics/[topic]节点添加PartitionModificationsListener,用来监听topic中的分区分配变化。

    4. 更新集群的元数据信息,同步到其他普通的broker节点中。

6.3.Partition副本选举Leader机制

    controller感知到分区leader所在的broker挂了(controller监听了很多zk节点可以感知到broker存活),controller会从每个parititon的 replicas 副本列表中取出第一个broker作为leader,当然这个broker需要也同时在ISR列表里。这也成为副本优先机制

6.4.消费者消费消息的offset记录机制

    每个consumer会定期将自己消费分区的offset提交给 kafka内部topic:__consumer_offsets,提交过去的时候,key是 consumerGroupId+topic+分区号,value就是当前offset的值,kafka会定期清理topic里的消息,最后就保留最新的那条数据,因为__consumer_offsets可能会接收高并发的请求,kafka默认给其分配50个分区(可以通过offsets.topic.num.partitions设置),这样可以通过加机器的方式抗大并发。

    __consumer_offsets 的每条消息格式大致如图所示:

      

 

    一般情况下,当集群中第一次有消费者消费消息时会自动创建 __consumer_offsets,它的副本因子受 offsets.topic.replication.factor 参数的约束,默认值为3

 

6.5.消费者Rebalance机制

    消费者rebalance就是说如果consumer group中某个消费者挂了,此时会自动把分配给他的分区交给其他的消费者,如果他又重启了,那么又会把一些分区重新交还给他如下情况可能会触发消费者rebalance

    1. consumer所在服务重启或宕机了

    2. 动态给topic增加了分区

    3. 消费组订阅了更多的topic

  Rebalance过程如下

    当有消费者加入消费组时,消费者、消费组及组协调器之间会经历以下几个阶段。

    第一阶段:选择组协调器

      组协调器GroupCoordinator:每个consumer group都会选择一个broker作为自己的组协调器coordinator,负责监控这个消费组里的所有消费者的心跳,以及判断是否宕机,然后开启消费者rebalance。consumer group中的每个consumer启动时会向kafka集群中的某个节点发送 FindCoordinatorRequest 请求来查找对应的组协调器GroupCoordinator,并跟其建立网络连接。

    组协调器选择方式:

      通过如下公式可以选出consumer消费的offset要提交到__consumer_offsets的哪个分区,这个分区leader对应的broker就是这个consumer group的coordinator

      公式:hash(consumer group id) % __consumer_offsets主题的分区数 (50)

    第二阶段:加入消费组JOIN GROUP

      在成功找到消费组所对应的 GroupCoordinator 之后就进入加入消费组的阶段,在此阶段的消费者会向GroupCoordinator 发送 JoinGroupRequest 请求,并处理响应。然后GroupCoordinator 从一个consumer group中选择第一个加入group的consumer作为leader(消费组协调器),把consumer group情况发送给这个leader,接着这个leader会负责制定分区方案。

    第三阶段( SYNC GROUP)

      consumer leader通过给GroupCoordinator发送SyncGroupRequest,接着GroupCoordinator就把分区方案下发给各个consumer,他们会根据指定分区的leader broker进行网络连接以及消息消费。

6.6.消费者Rebalance分区分配策略

  主要有三种rebalance的策略:range、round-robin、sticky。

    Kafka 提供了消费者客户端参数partition.assignment.strategy 来设置消费者与订阅主题之间的分区分配策略。默认情况为range分配策略。

    假设一个主题有10个分区(0-9),现在有三个consumer消费:

      range策略就是按照分区序号排序,假设 n=分区数/消费者数量 = 3, m=分区数%消费者数量 = 1,那么前 m 个消费者每个分配 n+1 个分区,后面的(消费者数量-m )个消费者每个分配 n 个分区。比如分区0~3给一个consumer,分区4~6给一个consumer,分区7~9给一个consumer。

      round-robin策略就是轮询分配,比如分区0、3、6、9给一个consumer,分区1、4、7给一个consumer,分区2、5、8给一个consumer

      sticky策略就是在rebalance的时候,需要保证如下两个原则。

        1)分区的分配要尽可能均匀 。

        2)分区的分配尽可能与上次分配的保持相同。

      当两者发生冲突时,第一个目标优先于第二个目标 。这样可以最大程度维持原来的分区分配的策略。比如对于第一种range情况的分配,如果第三个consumer挂了,那么重新用sticky策略分配的结果如下:

    consumer1除了原有的0~3,会再分配一个7

    consumer2除了原有的4~6,会再分配8和9

 

 

深入理解Kafka核心设计及原理(一):初始Kafka

深入理解Kafka核心设计及原理(二):生产者

深入理解Kafka核心设计及原理(三):消费者

深入理解Kafka核心设计及原理(四):主题管理

深入理解Kafka核心设计及原理(五):消息存储

 

标签: kafka

目录
相关文章
|
22天前
|
消息中间件 负载均衡 大数据
揭秘Kafka背后的秘密!再均衡如何上演一场消费者组的‘权力游戏’,让消息处理秒变高能剧情?
【8月更文挑战第24天】Kafka是一款在大数据处理领域备受推崇的产品,以其出色的性能和可扩展性著称。本文通过一个具体案例介绍其核心机制之一——再均衡(Rebalancing)。案例中,“user_activity”主题下10个分区被3个消费者均衡消费。当新消费者加入或原有消费者离开时,Kafka将自动触发再均衡过程,确保所有消费者能有效处理分配给它们的分区。
118 62
|
22天前
|
消息中间件 负载均衡 Kafka
Kafka分区分配策略大揭秘:RoundRobin、Range、Sticky,你真的了解它们吗?
【8月更文挑战第24天】Kafka是一款突出高吞吐量、可扩展性和数据持久性的分布式流处理平台。其核心特性之一是分区分配策略,对于实现系统的负载均衡和高可用性至关重要。Kafka支持三种主要的分区分配策略:RoundRobin(轮询)、Range(范围)和Sticky(粘性)。RoundRobin策略通过轮询方式均衡分配分区;Range策略根据主题分区数和消费者数量分配;而Sticky策略则在保持原有分配的基础上动态调整,以确保各消费者负载均衡。理解这些策略有助于优化Kafka性能并满足不同业务场景需求。
123 59
|
22天前
|
消息中间件 Kafka 数据库
深入理解Kafka的数据一致性原理及其与传统数据库的对比
【8月更文挑战第24天】在分布式系统中,确保数据一致性至关重要。传统数据库利用ACID原则保障事务完整性;相比之下,Kafka作为高性能消息队列,采用副本机制与日志结构确保数据一致性。通过同步所有副本上的数据、维护消息顺序以及支持生产者的幂等性操作,Kafka在不牺牲性能的前提下实现了高可用性和数据可靠性。这些特性使Kafka成为处理大规模数据流的理想工具。
39 6
|
22天前
|
消息中间件 Kafka 测试技术
【Kafka揭秘】Leader选举大揭秘!如何打造一个不丢失消息的强大Kafka集群?
【8月更文挑战第24天】Apache Kafka是一款高性能分布式消息系统,利用分区机制支持数据并行处理。每个分区含一个Leader处理所有读写请求,并可有多个副本确保数据安全与容错。关键的Leader选举机制保障了系统的高可用性和数据一致性。选举发生于分区创建、Leader故障或被手动移除时。Kafka提供多种选举策略:内嵌机制自动选择最新数据副本为新Leader;Unclean选举快速恢复服务但可能丢失数据;Delayed Unclean选举则避免短暂故障下的Unclean选举;Preferred选举允许基于性能或地理位置偏好指定特定副本为首选Leader。
38 5
|
21天前
|
消息中间件 负载均衡 Java
揭秘Kafka背后的秘密!Kafka 架构设计大曝光:深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据处理及流传输设计的高效率消息系统。其核心特性包括高吞吐量、低延迟及出色的可扩展性。Kafka采用分布式日志模型,支持数据分区与副本,确保数据可靠性和持久性。系统由Producer(消息生产者)、Consumer(消息消费者)及Broker(消息服务器)组成。Kafka支持消费者组,实现数据并行处理,提升整体性能。通过内置的故障恢复机制,即使部分节点失效,系统仍能保持稳定运行。提供的Java示例代码展示了如何使用Kafka进行消息的生产和消费,并演示了故障转移处理过程。
34 3
|
21天前
|
消息中间件 Java Kafka
如何在Kafka分布式环境中保证消息的顺序消费?深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据管道和流处理设计的分布式平台,以其高效的消息发布与订阅功能著称。在分布式环境中确保消息按序消费颇具挑战。本文首先介绍了Kafka通过Topic分区实现消息排序的基本机制,随后详细阐述了几种保证消息顺序性的策略,包括使用单分区Topic、消费者组搭配单分区消费、幂等性生产者以及事务支持等技术手段。最后,通过一个Java示例演示了如何利用Kafka消费者确保消息按序消费的具体实现过程。
41 3
|
23天前
|
消息中间件 存储 SQL
Kafka架构及其原理
Kafka架构及其原理
61 1
|
28天前
|
消息中间件 存储 缓存
这么酷的Kafka,背后的原理了解一下又不会死!
这么酷的Kafka,背后的原理了解一下又不会死!
|
1月前
|
消息中间件 负载均衡 Java
"深入Kafka核心:探索高效灵活的Consumer机制,以Java示例展示数据流的优雅消费之道"
【8月更文挑战第10天】在大数据领域,Apache Kafka凭借其出色的性能成为消息传递与流处理的首选工具。Kafka Consumer作为关键组件,负责优雅地从集群中提取并处理数据。它支持消息的负载均衡与容错,通过Consumer Group实现消息的水平扩展。下面通过一个Java示例展示如何启动Consumer并消费数据,同时体现了Kafka Consumer设计的灵活性与高效性,使其成为复杂消费场景的理想选择。
77 4
|
1月前
|
消息中间件 负载均衡 Java
"Kafka核心机制揭秘:深入探索Producer的高效数据发布策略与Java实战应用"
【8月更文挑战第10天】Apache Kafka作为顶级分布式流处理平台,其Producer组件是数据高效发布的引擎。Producer遵循高吞吐、低延迟等设计原则,采用分批发送、异步处理及数据压缩等技术提升性能。它支持按消息键值分区,确保数据有序并实现负载均衡;提供多种确认机制保证可靠性;具备失败重试功能确保消息最终送达。Java示例展示了基本配置与消息发送流程,体现了Producer的强大与灵活性。
50 3