深入理解java线程池 一

简介: 深入理解java线程池 一

本文为博主原创,未经允许不得转载

  在多线程和高并发场景中,需要创建大量的线程来进行业务处理,我们通常创建线程有两种方法,一种是通过继承Thread类,另一种是实现Runnable的接口,但是我们创建这两种线程在运行结束后都会被虚拟机销毁,如果数量多的话,频繁的创建和销毁线程会大大浪费时间和效率,更重要的是浪费内存,线程执行完毕后变为死亡状态,线程对象变为垃圾,这个需要依靠虚拟机进行监督和回收,影响系统的性能。这种问题使用线程池便可以很好的解决。通过线程池线程,销毁及回收等交由线程池进行管理,就可以避免以上的问题。

我们在使用过程中经常会直接使用newSingleThreadExecutor(),newCachedThreadPool(),newFixedThreadPool(int Threads)等已经封装好的线程池,但这些都是通过ThreadPoolExecutor类中通过构造函数传入不同的参数封装的对象,所以想要了解线程池,我们就要认真研究一下线程池中最重要的ThreadPoolExecutor类。

ThreadPoolExecutor类最重要的构造函数:

 public ThreadPoolExecutor(int corePoolSize,
     int maximumPoolSize,
     long keepAliveTime,
     TimeUnit unit,
     BlockingQueue<Runnable> workQueue,
     ThreadFactory threadFactory,
     RejectedExecutionHandler handler) 

函数的参数含义如下:

  corePoolSize:核心池大小,指定了线程池中的线程数量。

  maximumPoolSize:最大池大小,指定了线程池中的最大线程数量。

  keepAliveTime:存活时间,当线程池数量超过corePoolSize时,多余的空闲线程的存活时间,即超过corePoolSize的空闲线程,在多长时间内会被销毁。

  unit:keepAliveTime的单位。

  workQueue:任务队列,被提交单尚未被执行的任务。

  threadFactory:线程工厂,用于创建线程,一般用于默认的即可。

  handler:拒绝策略。当任务太多来不及处理时,如何拒绝任务。

  核心池大小,最大池大小和存活时间共同管理这线程的创建与销毁。核心池大小是目标大小;线程池的实现试图维护线程池的大小,即是没有任务执行,池的大小也等于核心池的大小,并且在工作队列充满前,线程池都不会创建更多的线程。最大池的大小是可同时活动的线程数的上限。如果一个线程已经闲置的时间超过了存活时间,它将被线程池回收。

  构造函数的参数中大部分都很简单,只有参数workQueue和handler需要进行详细说明,下面对这两个参数进行详细的说明:

  参数workQueue指被提交但未执行的任务队列,它是一个BlockingQueue接口的对象,仅用于存放Runnable对象,根据队列功能分类,在ThreadPoolExecutor类的构造函数中可以使用以下几种BlockingQueue接口。

  1.直接提交的队列:该功能由SynchronousQueue对象提供。SynchronousQueue是一个特殊的BlockingQueue。SynchronousQueue没有容量,每一个插入操作都要等待一个相应的删除操作,反之,每一个删除操作都要等待对应的插入操作。如果使用SynchronousQueue,则提交的任务不会被真实的保存,而总是将新任务提交给线程执行,如果没有空闲线程,则尝试创建新的线程,如果进程数量已经达到最大值,则执行拒绝策略。因此,使用SynchronousQueue队列,通常要设置很大的maximumPoolSize值,否则很容易执行拒绝策略。

  2.有界的任务队列:有界的任务队列可以使用ArrayBlockingQueue类实现。ArrayBlockingQueue类的构造函数必须带一个容量参数,表示该队列的最大容量:

public ArrayBlockingQueue(int capacity)

当使用有界的任务队列时,若有新的任务需要执行,如果线程池的实际线程数小于corePoolSize,则会优先创建新的线程,若大于corePoolSize,则会将新任务加入等待队列。若等待队列已满,无法加入。则在总线程数不大于maximumPoolSize的前提下,创建新的进程执行任务。若大于maximumPoolSize,则执行拒绝策略。可见,有界队列仅当在任务队列装满时,才可能将线程数提升到corePoolSize以上,换言之,除非系统非常繁忙,否则要确保核心线程数维持在corePoolSize。

  3.无界的任务队列:无界任务队列可以通过LinkedBlockingQueue类实现。与有界队列相比,除非系统资源耗尽,否则无界的任务队列不存在任务入队失败的情况。当有新的任务到来,系统的线程数小于corePoolSize时,线程池会生成新的线程执行任务,但当系统的线程数达到corePoolSize时,线程就不会继续增加了。若后续任由新的任务加入,而又没有空闲的线程资源,则任务直接进入队列等待。若任务创建和处理的速度差异很大,无界队列会保持快速增长,直到耗尽系统内存。

  4.优先任务队列:优先任务队列是带有执行优先级的任务队列。它通过PriorityBlockingQueue类实现,可以控制任务的执行先后顺序。他是一个特殊的无界队列。无论是有界队列ArrayBlockingQueue类,还是未指定大小的无界队列LinkedBlockingQueue类都是按照先进先出算法处理任务的。而PriorityBlockingQueue类则可以根据任务自身的优先级顺序先后执行,在确保系统性能的同时,也能有很好的质量保证(总是确保高优先级的任务先执行)。

  拒绝策略:

  ThreadPoolExecutor类的最后一个参数指定了拒绝策略。也就是当任务数量超过系统实际承载能力时,就要用到拒绝策略了。拒绝策略可以说是系统超负荷运行时的补救措施,通常由于压力太大而引起的,也就是线程池中的线程已经用完了,无法继续为新任务服务,同时,等待队列中也已经排满了,再也放不下新任务了。这时,我们就需要有一套机制合理的处理这个问题。

  jdk在ThreadPoolExecutor类中定义了四种内置的拒绝策略,其均实现RejectedExecutionHandler接口。其四种拒绝策略为:

    1.AbortPolicy策略:该策略会直接抛出异常,阻止系统正常工作。

    2.CallRunsPolicy策略:只要线程池未关闭,该策略直接在调用者线程中,运行当前被丢弃的任务。显然这样做不会真的丢弃任务,但是,任务提交线程的性能极有可能会急剧下降。

    3.DiscardOldestPolicy策略:该策略将丢弃最老的一个请求,也就是即将被执行的一个任务,并尝试再次提交当前任务。

    4.DiscardPolicy策略:该策略默默地丢弃无法处理的任务,不予任何处理。如果允许任务丢失,我觉得这可能是最好的一种方案了吧。

  线程池的主要作用是为了线程复用,也就是避免了线程的频繁创建。但是,最开始的那些线程从何而来呢?答案就是ThreadFactory。ThreadFactory是一个接口,它只有一个用来创建线程的方法:

Thread newThread(Runnable r);

  当线程池需要新建线程时,就会调用这个方法。

  对于核心的几个线程池,无论是newFixedThreadPool()方法,newSingleThreadExecutor()方法,还是newCacheThreadPool()方法,虽然看起来创建的线程有着完全不同的功能特点,但其内部实现均使用了ThreadPoolExecutor类,下面给出这三个线程池的实现方式

  public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

  newFixedThreadPool() 方法的实现,它返回了一个corePoolSize和maximumPoolSize大小一样的,并且使用了LinkedBlockingQueue任务队列的线程池。因为对固定大小的线程池而言,不存在线程数量的动态变化,因此corePoreSize和maximumPoolSize相等。同时,它使用无界队列存放无法立即执行的任务,当任务提交非常频繁的时候,该队列可能迅速膨胀,从而耗尽系统资源。

 public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

  newSingleThreadExecutor()方法返回的单线程线程池,是newFixedThreadPool()方法的一种退化,只是简单的将线程池线程数量设置为1。它的特点在于工作线程数目被限制为1,操作一个无界的工作队列,所以他能保证了所有任务都是被顺序执行,最多会有一个任务处于活动状态,并且不允许使用者改动线程池实例,因此可以避免其改变线程数目。

public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

  newCacheThreadPool()方法返回corePoolSize为0,maximumPoolSize无穷大的线程池,这意味着在没有任务时,该线程池内无线程,而当任务被提交时,该线程池会使用空闲的线程执行任务,若无空闲线程,则将任务加入SynchronousQueue队列,而SynchronousQueue队列时一种直接提交的队列,它总会迫使线程池增加新的线程执行任务。当任务执行完毕后,由于corePoolSize为0,因此空闲线程又会在指定时间内60秒内被回收。它是一种用来处理大量短时间工作任务的线程池,具有几个鲜明特点:它会试图缓存线程并重用,当无缓存线程可用时,就会创建新的工作线程;如果线程闲置的时间超过60秒,则被终止并移除缓存,长时间闲置时,这种线程池,不会消耗什么资源,其内部使用SynchronousQueue作为工作队列,无界线程池,可以进行自动线程回收。

  在使用自定义线程池时,要根据应用的具体情况,选择合适的并发队列作为任务的缓冲。当线程资源紧张时,不同的并发队列对系统行为和性能的影响也不相同。

import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

public class ThreadPoolDefinedTest {
    public static void main(String[] args) {
        LinkedBlockingQueue<Runnable> blockingQueue = new LinkedBlockingQueue<>(100);
        ThreadFactory threadFactory = new ThreadFactory() {
            //  int i = 0;  用并发安全的包装类
            AtomicInteger atomicInteger = new AtomicInteger(1);
            @Override
            public Thread newThread(Runnable r) {
                //创建线程任务传进来
                Thread thread = new Thread(r);
                // 给线程起个名字
                thread.setName("MyThread" + atomicInteger.getAndIncrement());
                return thread;
            }
        };
        
        ThreadPoolExecutor pool = new ThreadPoolExecutor(10, 10, 1, TimeUnit.SECONDS, blockingQueue, threadFactory);
        for (int i = 0; i < 5; i++) {
           pool.execute(new Runnable() {
               @Override
               public void run() {
                   try {
                       method();
                   } catch (InterruptedException e) {
                       e.printStackTrace();
                   }
               }
           });
    
        }
    }
    
    private static void method() throws InterruptedException {
        System.out.println("ThreadName" + Thread.currentThread().getName() + "进来了");
        Thread.sleep(2000);
        System.out.println("ThreadName" + Thread.currentThread().getName() + "出去了");
    }
}

  通过探究ThreadPoolExecutor类中封装的线程池的构造函数,可以有效的理解创建线程池时的各个参数的作用,从而选择适合我们业务场景所需要的线程池类型。线程池涵盖的内容很多很丰富,我们需要不断通过学习和实践,增强我们对线程,线程池的理解,希望通过本篇文章对你能有所帮助。

标签: 高并发

目录
相关文章
|
2月前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
16天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
74 17
|
5月前
|
Java 调度 数据库
Java并发编程:深入理解线程池
在Java并发编程的海洋中,线程池是一艘强大的船,它不仅提高了性能,还简化了代码结构。本文将带你潜入线程池的深海,探索其核心组件、工作原理及如何高效利用线程池来优化你的并发应用。
|
5月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
152 1
|
2月前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
233 64
|
5月前
|
安全 Java 数据库
一天十道Java面试题----第四天(线程池复用的原理------>spring事务的实现方式原理以及隔离级别)
这篇文章是关于Java面试题的笔记,涵盖了线程池复用原理、Spring框架基础、AOP和IOC概念、Bean生命周期和作用域、单例Bean的线程安全性、Spring中使用的设计模式、以及Spring事务的实现方式和隔离级别等知识点。
|
5月前
|
存储 监控 安全
一天十道Java面试题----第三天(对线程安全的理解------>线程池中阻塞队列的作用)
这篇文章是Java面试第三天的笔记,讨论了线程安全、Thread与Runnable的区别、守护线程、ThreadLocal原理及内存泄漏问题、并发并行串行的概念、并发三大特性、线程池的使用原因和解释、线程池处理流程,以及线程池中阻塞队列的作用和设计考虑。
|
1月前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
1月前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
2月前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
126 38