TFLearn实例

简介: 【7月更文挑战第27天】TFLearn实例。

在TFLearn目录下新建CNN_MNIST.py,在PyCharm中编写代码。
使用TFLearn搭建一个两层的卷积神经网络,数据集是MNIST手写数字的数据集,TFLearn将卷积、池化、正则化等操作都封装成了类,所以需要先导入这些类。
from future import division, print_function, absolute_import
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
导入类之后,需要构建一个拥有两个卷积层的神经网络。使用TFLearn的卷积、池化、正则化、全连接、Dropout等操作完成网络构建,TFLearn在卷积的时候,参数包含激活函数,所以不必单独构建激活函数。

MNIST数据集加载

import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])

搭建卷积神经网络,两层卷积

network = input_data(shape=[None, 28, 28, 1], name='input')
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
network = max_pool_2d(network, 2)
network = local_response_normalization(network)
network = fully_connected(network, 128, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 256, activation='tanh')
network = dropout(network, 0.8)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.01,
loss='categorical_crossentropy', name='target')
regression()函数中需要规定优化器类型、学习率和损失函数类型。
完成网络构建后,开始训练模型,在训练过程中可以看到损失以及准确率。

训练

model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit({'input': X}, {'target': Y}, n_epoch=20,
validation_set=({'input': testX}, {'target': testY}),
snapshot_step=100, show_metric=True, run_id='convnet_mnist')
使用TFLearn构建神经网络时,由于封装度更高,所以整体的代码非常简洁。

相关文章
|
8月前
|
机器学习/深度学习 数据可视化 TensorFlow
TFLearn介绍
【7月更文挑战第27天】TFLearn介绍。
56 4
|
9月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch中的模型创建(一)
最全最详细的PyTorch神经网络创建
|
9月前
|
机器学习/深度学习 PyTorch 算法框架/工具
|
8月前
|
机器学习/深度学习 TensorFlow API
Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。
Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
基于Pytorch通过实例详细剖析CNN
基于Pytorch通过实例详细剖析CNN
105 1
基于Pytorch通过实例详细剖析CNN
|
10月前
|
机器学习/深度学习 算法框架/工具 Python
如何使用Python的Keras库构建神经网络模型?
使用Python的Keras库构建神经网络模型,示例包括一个Sequential模型,添加了三层:输入层(64个节点,ReLU激活),一个隐藏层(32个节点,ReLU激活)和输出层(10个节点,softmax激活)。
77 1
|
10月前
|
机器学习/深度学习 人工智能 PyTorch
基于Numpy构建RNN模块并进行实例应用(附代码)
基于Numpy构建RNN模块并进行实例应用(附代码)
109 0
|
10月前
|
机器学习/深度学习 存储 人工智能
基于NumPy构建LSTM模块并进行实例应用(附代码)
基于NumPy构建LSTM模块并进行实例应用(附代码)
303 0
|
Python
python 3.7 进行mnist高级训练
python 3.7 进行mnist高级训练
69 0
|
机器学习/深度学习 存储 并行计算
【Pytorch神经网络理论篇】 27 图神经网络DGL库:简介+安装+卸载+数据集+PYG库+NetWorkx库
DGL库是由纽约大学和亚马逊联手推出的图神经网络框架,支持对异构图的处理,开源相关异构图神经网络的代码,在GCMC、RGCN等业内知名的模型实现上也取得了很好的效果。
1814 0

热门文章

最新文章