数据架构问题之流式架构的典型代表图示有吗

简介: 数据架构问题之流式架构的典型代表图示有吗

问题一:在传统大数据架构中,数据是如何流动的?



参考答案:

传统大数据架构中,数据从业务系统数据源通过数据采集和数据同步工具进入数据仓库,大致上会依次经过ODS层、DWD层和ADS层,最终提供给消费方使用。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616717



问题二:流式架构是什么样的思路?



参考答案:

流式架构的思路是相当激进的,它直接让流式计算引擎消费业务数据库产生的增量数据,并直接输出给消费方,以此提供实时的计算结果。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616718



问题三:流式架构是否保留了离线的数据采集、数据同步和ETL工作?



参考答案:

没有,流式架构干脆扔掉一整套离线的数据采集、数据同步和ETL工作。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616720



问题四:流式架构如何处理业务数据库的增量数据?



参考答案:

流式架构直接让流式计算引擎消费业务数据库产生的增量数据,并直接输出给消费方。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616721



问题五:有没有流式架构的典型代表图示?



参考答案:

有的,下图中展示了流式架构的典型代表。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616722

相关文章
|
4天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
49 7
|
4天前
|
数据采集 搜索推荐 数据管理
数据架构 CDP 是什么?
数据架构 CDP 是什么?
17 2
|
3月前
|
机器学习/深度学习 数据采集 人工智能
揭秘!47页文档拆解苹果智能,从架构、数据到训练和优化
【8月更文挑战第23天】苹果公司发布了一份47页的研究文档,深入解析了其在智能基础语言模型领域的探索与突破。文档揭示了苹果在此领域的雄厚实力,并分享了其独特的混合架构设计,该设计融合了Transformer与RNN的优势,显著提高了模型处理序列数据的效能与表现力。然而,这种架构也带来了诸如权重平衡与资源消耗等挑战。苹果利用海量、多样的高质量数据集训练模型,但确保数据质量及处理噪声仍需克服。此外,苹果采取了自监督与无监督学习相结合的高效训练策略,以增强模型的泛化与稳健性,但仍需解决预训练任务选择及超参数调优等问题。
148 66
|
4月前
|
存储 分布式数据库 数据库
Hbase学习二:Hbase数据特点和架构特点
Hbase学习二:Hbase数据特点和架构特点
80 0
|
1月前
|
存储 大数据 数据处理
洞察未来:数据治理中的数据架构新思维
数据治理中的数据架构新思维对于应对未来挑战、提高数据处理效率、加强数据安全与隐私保护以及促进数据驱动的业务创新具有重要意义。企业需要紧跟时代步伐,不断探索和实践新型数据架构,以洞察未来发展趋势,为企业的长远发展奠定坚实基础。
|
2月前
|
存储 搜索推荐 数据库
MarkLogic在微服务架构中的应用:提供服务间通信和数据共享的机制
随着微服务架构的发展,服务间通信和数据共享成为关键挑战。本文介绍MarkLogic数据库在微服务架构中的应用,阐述其多模型支持、索引搜索、事务处理及高可用性等优势,以及如何利用MarkLogic实现数据共享、服务间通信、事件驱动架构和数据分析,提升系统的可伸缩性和可靠性。
43 5
|
3月前
|
安全 网络安全 数据安全/隐私保护
云原生技术探索:容器化与微服务架构的实践之路网络安全与信息安全:保护数据的关键策略
【8月更文挑战第28天】本文将深入探讨云原生技术的核心概念,包括容器化和微服务架构。我们将通过实际案例和代码示例,展示如何在云平台上实现高效的应用部署和管理。文章不仅提供理论知识,还包含实操指南,帮助开发者理解并应用这些前沿技术。 【8月更文挑战第28天】在数字化时代,网络安全和信息安全是保护个人和企业数据的前线防御。本文将探讨网络安全漏洞的成因、加密技术的应用以及提升安全意识的重要性。文章旨在通过分析网络安全的薄弱环节,介绍如何利用加密技术和提高用户警觉性来构建更为坚固的数据保护屏障。
|
3月前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
3月前
|
机器学习/深度学习 自然语言处理 数据处理
|
3月前
|
缓存 程序员 调度
第3章-图形处理单元-3.1-数据并行架构
第3章-图形处理单元-3.1-数据并行架构
32 1