浅析JAVA日志中的性能实践与原理解释问题之AsyncAppender的配置方式的问题是如何解决的

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 浅析JAVA日志中的性能实践与原理解释问题之AsyncAppender的配置方式的问题是如何解决的

问题一:AsyncAppender的配置方式是怎样的?

AsyncAppender的配置方式是怎样的?


参考回答:

配置方式如下:

<Async name="Async"> 
<AppenderRef ref="RollingRandomAccessFile"/> 
<shutdownTimeout>500</shutdownTimeout> 
<bufferSize>1024</bufferSize> 
<blocking>true</blocking> 
</Async>


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/623228


问题二:AsyncAppender的设计意图是什么?

AsyncAppender的设计意图是什么?


参考回答:

先提供一个系统缓冲区来缓存即将写入的内容,但当缓冲区满时,提供了直接丢弃或进行等待两种策略。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/623229


问题三:AsyncLogger和AsyncAppender有什么主要区别?

AsyncLogger和AsyncAppender有什么主要区别?


参考回答:

AsyncLogger使用更为简单,只需设置启动参数即可全局启用异步日志,而AsyncAppender需要在配置文件中进行配置。AsyncLogger使用了LMAX Disruptor的高性能队列,因此在性能上相比AsyncAppender具有更好的表现。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/623230


问题四:AsyncLogger为什么相比AsyncAppender性能更好?

AsyncLogger为什么相比AsyncAppender性能更好?


参考回答:

AsyncLogger使用了LMAX Disruptor的高性能队列,解决了伪共享问题,采用了无锁的队列设计,只需CAS的开销,因此在单线程吞吐和多线程并发方面具有更好的性能。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/623231


问题五:LMAX Disruptor相比阻塞队列性能能随线程数扩展的原因是什么?

LMAX Disruptor相比阻塞队列性能能随线程数扩展的原因是什么?


参考回答:

LMAX Disruptor相比阻塞队列性能能随线程数扩展的原因主要有三点:解决了伪共享问题;无锁的队列设计,只需CAS的开销;在日志场景下对比的是队列性能。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/623232

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
9天前
|
人工智能 自然语言处理 前端开发
从理论到实践:使用JAVA实现RAG、Agent、微调等六种常见大模型定制策略
大语言模型(LLM)在过去几年中彻底改变了自然语言处理领域,展现了在理解和生成类人文本方面的卓越能力。然而,通用LLM的开箱即用性能并不总能满足特定的业务需求或领域要求。为了将LLM更好地应用于实际场景,开发出了多种LLM定制策略。本文将深入探讨RAG(Retrieval Augmented Generation)、Agent、微调(Fine-Tuning)等六种常见的大模型定制策略,并使用JAVA进行demo处理,以期为AI资深架构师提供实践指导。
143 73
|
5天前
|
存储 缓存 安全
【原理】【Java并发】【volatile】适合初学者体质的volatile原理
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是写出高端的CRUD应用。2025年,我正在沉淀自己,博客更新速度也在加快。在这里,我会分享关于Java并发编程的深入理解,尤其是volatile关键字的底层原理。 本文将带你深入了解Java内存模型(JMM),解释volatile如何通过内存屏障和缓存一致性协议确保可见性和有序性,同时探讨其局限性及优化方案。欢迎订阅专栏《在2B工作中寻求并发是否搞错了什么》,一起探索并发编程的奥秘! 关注我,点赞、收藏、评论,跟上更新节奏,让我们共同进步!
73 8
【原理】【Java并发】【volatile】适合初学者体质的volatile原理
|
1月前
|
安全 Java 开发者
【JAVA】封装多线程原理
Java 中的多线程封装旨在简化使用、提高安全性和增强可维护性。通过抽象和隐藏底层细节,提供简洁接口。常见封装方式包括基于 Runnable 和 Callable 接口的任务封装,以及线程池的封装。Runnable 适用于无返回值任务,Callable 支持有返回值任务。线程池(如 ExecutorService)则用于管理和复用线程,减少性能开销。示例代码展示了如何实现这些封装,使多线程编程更加高效和安全。
|
1月前
|
存储 算法 Java
【JAVA】生成accessToken原理
在Java中,生成accessToken用于身份验证和授权,确保合法用户访问受保护资源。流程包括:1. 身份验证(如用户名密码、OAuth 2.0);2. 生成唯一且安全的令牌;3. 设置令牌有效期并存储;4. 客户端传递令牌,服务器验证其有效性。常见场景为OAuth 2.0协议,涉及客户端注册、用户授权、获取授权码和换取accessToken。示例代码展示了使用Apache HttpClient库模拟OAuth 2.0获取accessToken的过程。
|
9天前
|
Arthas 监控 Java
拥抱 OpenTelemetry:阿里云 Java Agent 演进实践
拥抱 OpenTelemetry:阿里云 Java Agent 演进实践
|
13天前
|
人工智能 Java 数据处理
Java高级应用开发:基于AI的微服务架构优化与性能调优
在现代企业级应用开发中,微服务架构虽带来灵活性和可扩展性,但也增加了系统复杂性和性能瓶颈。本文探讨如何利用AI技术,特别是像DeepSeek这样的智能工具,优化Java微服务架构。AI通过智能分析系统运行数据,自动识别并解决性能瓶颈,优化服务拆分、通信方式及资源管理,实现高效性能调优,助力开发者设计更合理的微服务架构,迎接未来智能化开发的新时代。
|
2月前
|
Kubernetes Java 持续交付
小团队 CI/CD 实践:无需运维,Java Web应用的自动化部署
本文介绍如何使用GitHub Actions和阿里云Kubernetes(ACK)实现Java Web应用的自动化部署。通过CI/CD流程,开发人员无需手动处理复杂的运维任务,从而提高效率并减少错误。文中详细讲解了Docker与Kubernetes的概念,并演示了从创建Kubernetes集群、配置容器镜像服务到设置GitHub仓库Secrets及编写GitHub Actions工作流的具体步骤。最终实现了代码提交后自动构建、推送镜像并部署到Kubernetes集群的功能。整个过程不仅简化了部署流程,还确保了应用在不同环境中的稳定运行。
94 9
|
3月前
|
监控 Java API
探索Java NIO:究竟在哪些领域能大显身手?揭秘原理、应用场景与官方示例代码
Java NIO(New IO)自Java SE 1.4引入,提供比传统IO更高效、灵活的操作,支持非阻塞IO和选择器特性,适用于高并发、高吞吐量场景。NIO的核心概念包括通道(Channel)、缓冲区(Buffer)和选择器(Selector),能实现多路复用和异步操作。其应用场景涵盖网络通信、文件操作、进程间通信及数据库操作等。NIO的优势在于提高并发性和性能,简化编程;但学习成本较高,且与传统IO存在不兼容性。尽管如此,NIO在构建高性能框架如Netty、Mina和Jetty中仍广泛应用。
69 3
|
3月前
|
安全 算法 Java
Java CAS原理和应用场景大揭秘:你掌握了吗?
CAS(Compare and Swap)是一种乐观锁机制,通过硬件指令实现原子操作,确保多线程环境下对共享变量的安全访问。它避免了传统互斥锁的性能开销和线程阻塞问题。CAS操作包含三个步骤:获取期望值、比较当前值与期望值是否相等、若相等则更新为新值。CAS广泛应用于高并发场景,如数据库事务、分布式锁、无锁数据结构等,但需注意ABA问题。Java中常用`java.util.concurrent.atomic`包下的类支持CAS操作。
104 2
|
3月前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####

热门文章

最新文章