实时计算 Flink版产品使用问题之如何在实例里配置监控哪些库,哪些表,包括黑名单,白名单

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC和canal 能不能同时用?

Flink CDC和canal 能不能同时用???? binlog模式的,是各玩各的,不是组合的那种



参考答案:

可以



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584639



问题二:FlinkCDC的问题,有没有办法 把这些清理的binlog重新拉回来重新消费?

FlinkCDC的问题,我使用cdc2.4进行Mysql同步,当rds的binlog文件被清理,binlog文件被转存至oss后,有没有办法 把这些清理的binlog重新拉回来重新消费?



参考答案:

不能,重新无状态启动补数据吧



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584638



问题三:Flink CDC有没有类似canal的实例?

Flink CDC有没有类似canal的实例?【就是在实例里配置监控哪些库,哪些表,包括黑名单,白名单】



参考答案:

flink cdc source 的入参,你可以去看看,应该可以是个list ,正则不确定能用,你可以去看看 源码的参数,

这是个list,传数组的,.databaseList("yourDatabaseName") // set captured database, If you need to synchronize the whole database, Please set tableList to ".*".在过滤一下你要的数据库



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584637



问题四:在一个Flink CDC程序里面,对mysql中多张表分别建立source,这样有什么区别吗?

在一个Flink CDC程序里面,对mysql中多张表分别建立source,再写入对应的sink;与使用dblist,tablelist建立一个source,写入多个对应的sink;这样有什么区别吗?



参考答案:

这两种方式的主要区别在于源表的定义和管理。

  1. 对每张表单独建立source并写入对应的sink:这种方式下,每个source都是独立的,你可以针对每张表单独配置CDC参数,例如捕获变更的起始位置、过滤条件等。但是,这种方式的缺点是代码可能会变得比较复杂,因为你需要为每张表都写一遍source和sink的定义。
  2. 使用dblist或tablelist建立一个source,写入多个对应的sink:这种方式下,所有的表都被视为一个整体,你可以在一个source中配置适用于所有表的CDC参数。这种方式的优点是代码会比较简洁,因为你可以一次性定义所有的表。但是,这种方式的缺点是你无法为不同的表设置不同的CDC参数。

总的来说,选择哪种方式主要取决于你的具体需求。如果你需要对每张表单独配置CDC参数,那么第一种方式可能更适合你。如果你希望代码更简洁,那么第二种方式可能更适合你。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584636



问题五:flink cdc有支持opengauss的connector吗?

flink cdc有支持opengauss的connector吗?



参考答案:

这个表里没有的应该就不支持



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584635

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
5月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
590 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
9月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
1132 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
608 56
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
794 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3979 74
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

热门文章

最新文章

相关产品

  • 实时计算 Flink版