DataphinV4.1大升级:支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
可视分析地图(DataV-Atlas),3 个项目,100M 存储空间
简介: DataphinV4.1大升级:支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式

Dataphin 是阿里云智能集团瓴羊旗下的智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.1版本中,Dataphin 支持了Lindorm计算引擎,优化代码搜索等功能体验,并全新推出公共云半托管部署模式,为用户提供更加高效、灵活、便捷、安全的数据管理与运营环境,促进企业数据资产的建设和价值挖掘。

👇

image.png

相关文章
|
20天前
|
SQL 存储 运维
从建模到运维:联犀如何完美融入时序数据库 TDengine 实现物联网数据流畅管理
本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品。文章从一个具体的业务场景出发,分析了企业在面对海量时序数据时的挑战,并提出了利用 TDengine 高效处理和存储数据的方法,帮助企业解决在数据采集、存储、分析等方面的痛点。通过这篇文章,作者不仅展示了自己对数据处理技术的理解,还进一步阐释了时序数据库在行业中的潜力与应用价值,为读者提供了很多实际的操作思路和技术选型的参考。
32 1
|
7月前
|
存储 SQL 多模数据库
多模数据库Lindorm再升级:对接Dataphin,打通数据治理“最后一公里”
Lindorm通过与Dataphin的深度整合,进一步解决了数据集成和数据治理的问题,为企业提供更加高效和更具性价比的方案。
多模数据库Lindorm再升级:对接Dataphin,打通数据治理“最后一公里”
|
7月前
|
数据采集 安全 API
DataphinV4.1大升级: 支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.1版本升级中,Dataphin 引入了Lindorm等多项新功能,并开启公共云半托管模式,优化代码搜索,为用户提供更加高效、灵活、安全的数据管理和运营环境,提升用户体验,促进企业数据资产的建设和价值挖掘。
1620 3
DataphinV4.1大升级: 支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
|
6月前
|
SQL 分布式计算 BI
实时计算 Flink版产品使用问题之基于宽表数据展示实时报表,该如何实现
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
存储 DataWorks 安全
DataWorks产品使用合集之没有使用独享资源组,如何将Lindorm中的数据导出或迁移到其他数据存储服务
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
57 0
|
7月前
|
时序数据库
时序数据库工具grafana里的$timeFilter查询1个小时内的数据如何写查询条件
【6月更文挑战第24天】时序数据库工具grafana里的$timeFilter查询1个小时内的数据如何写查询条件
877 0
|
消息中间件 存储 弹性计算
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
|
8月前
|
存储 SQL 监控
Lindorm:时序数据“存、算、管、用”的最佳实践
本文档介绍Lindorm时序引擎在时序数据的存储、计算、管理、应用上的最佳实践。
345 0
Lindorm:时序数据“存、算、管、用”的最佳实践
|
存储 NoSQL Oracle
「时序数据库」使用cassandra进行时间序列数据扫描
「时序数据库」使用cassandra进行时间序列数据扫描
|
SQL 存储 分布式计算
【时序数据库】时间序列数据和MongoDB第三部分-查询、分析和呈现时间序列数据
【时序数据库】时间序列数据和MongoDB第三部分-查询、分析和呈现时间序列数据

热门文章

最新文章