算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!

简介: 【7月更文挑战第12天】归并排序是高效稳定的排序算法,采用分治策略。Python 实现包括递归地分割数组及合并已排序部分。示例代码展示了如何将 `[12, 11, 13, 5, 6]` 分割并归并成有序数组 `[5, 6, 11, 12, 13]`。虽然 $O(n log n)$ 时间复杂度优秀,但需额外空间,适合大规模数据排序。对于小规模数据,可考虑其他算法。**

在算法的世界里,排序算法是基础且至关重要的一部分。归并排序作为一种高效且稳定的排序算法,以其独特的分治思想和优雅的实现方式,在众多排序算法中脱颖而出。下面我们将以最佳实践的形式深入剖析 Python 中的归并排序。

归并排序的核心思想是将一个数组分成两个子数组,分别对这两个子数组进行排序,然后将排序后的子数组合并成一个有序的数组。通过不断地重复这个过程,最终实现整个数组的排序。

以下是归并排序的 Python 代码实现:

def merge_sort(arr):
    if len(arr) <= 1:
        return arr
    mid = len(arr) // 2
    left_half = merge_sort(arr[:mid])
    right_half = merge_sort(arr[mid:])
    return merge(left_half, right_half)

def merge(left, right):
    result = []
    i = j = 0
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    result.extend(left[i:])
    result.extend(right[j:])
    return result

为了更好地理解归并排序的工作过程,让我们通过一个具体的例子来进行分析。

假设我们有一个未排序的数组 [12, 11, 13, 5, 6]

首先,将数组分成两个子数组 [12, 11, 13][5, 6]

[12, 11, 13] 再次进行分割,得到 [12][11, 13] ,然后对 [11, 13] 进行分割和排序,最终得到排序后的子数组 [11, 13]

[5, 6] 直接进行排序。

接下来,合并 [11, 13][12] 得到 [11, 12, 13] ,再合并 [11, 12, 13][5, 6] ,得到最终排序后的数组 [5, 6, 11, 12, 13]

在实际应用中,归并排序具有很多优点。它是一种稳定的排序算法,即相同元素的相对顺序在排序前后保持不变。而且,归并排序的时间复杂度始终为 $O(n log n)$ ,无论数组的初始状态如何。

然而,归并排序也并非完美无缺。它需要额外的存储空间来存储临时的子数组,这在处理大规模数据时可能会导致内存消耗较大。

为了充分发挥归并排序的优势,在实践中我们可以根据具体的场景进行优化。例如,对于小规模的数据,可以考虑使用插入排序等更简单的算法,因为在小规模数据上,这些算法的性能可能更好。

通过深入理解和实践归并排序,我们能够在算法的进阶之路上迈出坚实的一步,让数据排序变得更加高效和优雅。

目录
相关文章
|
1月前
|
JSON 算法 API
1688商品详情API实战:Python调用全流程与数据解析技巧
本文介绍了1688电商平台的商品详情API接口,助力电商从业者高效获取商品信息。接口可返回商品基础属性、价格体系、库存状态、图片描述及商家详情等多维度数据,支持全球化语言设置。通过Python示例代码展示了如何调用该接口,帮助用户快速上手,适用于选品分析、市场研究等场景。
|
2月前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
30天前
|
Web App开发 数据采集 JavaScript
动态网页爬取:Python如何获取JS加载的数据?
动态网页爬取:Python如何获取JS加载的数据?
332 58
|
23天前
|
人工智能 数据可视化 Python
在Python中对数据点进行标签化
本文介绍了如何在Python中使用Matplotlib和Seaborn对数据点进行标签化,提升数据可视化的信息量与可读性。通过散点图示例,展示了添加数据点标签的具体方法。标签化在标识数据点、分类数据可视化及趋势分析中具有重要作用。文章强调了根据需求选择合适工具,并保持图表清晰美观的重要性。
48 15
|
15天前
|
数据采集 Web App开发 JavaScript
Python爬虫解析动态网页:从渲染到数据提取
Python爬虫解析动态网页:从渲染到数据提取
|
26天前
|
存储 监控 算法
企业数据泄露风险防控视域下 Python 布隆过滤器算法的应用研究 —— 怎样防止员工私下接单,监控为例
本文探讨了布隆过滤器在企业员工行为监控中的应用。布隆过滤器是一种高效概率数据结构,具有空间复杂度低、查询速度快的特点,适用于大规模数据过滤场景。文章分析了其在网络访问监控和通讯内容筛查中的实践价值,并通过Python实现示例展示其技术优势。同时,文中指出布隆过滤器存在误判风险,需在准确性和资源消耗间权衡。最后强调构建多维度监控体系的重要性,结合技术与管理手段保障企业运营安全。
49 10
|
1月前
|
供应链 API 开发者
1688 商品数据接口终极指南:Python 开发者如何高效获取标题 / 价格 / 销量数据(附调试工具推荐)
1688商品列表API是阿里巴巴开放平台提供的服务,允许开发者通过API获取1688平台的商品信息(标题、价格、销量等)。适用于电商选品、比价工具、供应链管理等场景。使用时需构造请求URL,携带参数(如q、start_price、end_price等),发送HTTP请求并解析返回的JSON/XML数据。示例代码展示了如何用Python调用该API获取商品列表。
110 18
|
1月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
92 18
|
1月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
44 2
|
2月前
|
数据采集 存储 缓存
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
123 4

推荐镜像

更多