Transformers 4.37 中文文档(五十一)(2)https://developer.aliyun.com/article/1565776
PhiConfig
class transformers.PhiConfig
( vocab_size = 51200 hidden_size = 2048 intermediate_size = 8192 num_hidden_layers = 24 num_attention_heads = 32 num_key_value_heads = None resid_pdrop = 0.0 embd_pdrop = 0.0 attention_dropout = 0.0 hidden_act = 'gelu_new' max_position_embeddings = 2048 initializer_range = 0.02 layer_norm_eps = 1e-05 use_cache = True tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None partial_rotary_factor = 0.5 qk_layernorm = False bos_token_id = 1 eos_token_id = 2 **kwargs )
参数
vocab_size
(int
,可选,默认为 51200)— Phi 模型的词汇量。定义了在调用 PhiModel 时可以表示的不同令牌的数量。hidden_size
(int
,可选,默认为 2048)— 隐藏表示的维度。intermediate_size
(int
,可选,默认为 8192)— MLP 表示的维度。num_hidden_layers
(int
,可选,默认为 24)— Transformer 解码器中的隐藏层数。num_attention_heads
(int
,可选,默认为 32)— Transformer 解码器中每个注意力层的注意力头数。num_key_value_heads
(int
,可选)— 这是应该用于实现分组查询注意力的 key_value 头的数量。如果num_key_value_heads=num_attention_heads
,模型将使用多头注意力(MHA),如果num_key_value_heads=1
,模型将使用多查询注意力(MQA),否则使用 GQA。在将多头检查点转换为 GQA 检查点时,应通过对该组中所有原始头进行均值池化来构建每个组键和值头。有关更多详细信息,请查看此论文。如果未指定,将默认为num_attention_heads
。resid_pdrop
(float
,可选,默认为 0.0)— mlp 输出的 dropout 概率。embd_pdrop
(int
,可选,默认为 0.0)— 嵌入的 dropout 比率。attention_dropout
(float
,可选,默认为 0.0)— 计算注意力分数后的 dropout 比率。hidden_act
(str
或function
,可选,默认为"gelu_new"
) — 解码器中的非线性激活函数(函数或字符串)。max_position_embeddings
(int
, optional, defaults to 2048) — 此模型可能使用的最大序列长度。Phi-1 和 Phi-1.5 支持最多 2048 个标记。initializer_range
(float
, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。layer_norm_eps
(float
, optional, defaults to 1e-05) — rms 归一化层使用的 epsilon。use_cache
(bool
, optional, defaults toTrue
) — 模型是否应返回最后一个键/值注意力(不是所有模型都使用)。仅在config.is_decoder=True
时相关。是否绑定权重嵌入。tie_word_embeddings
(bool
, optional, defaults toFalse
) — 是否绑定权重嵌入rope_theta
(float
, optional, defaults to 10000.0) — RoPE 嵌入的基本周期。rope_scaling
(Dict
, optional) — 包含 RoPE 嵌入的缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为{"type": 策略名称, "factor": 缩放因子}
。在使用此标志时,不要将max_position_embeddings
更新为预期的新最大值。有关这些缩放策略行为的更多信息,请参阅以下主题:www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/
。这是一个实验性功能,可能在未来版本中发生破坏性 API 更改。partial_rotary_factor
(float
, optional, defaults to 0.5) — 查询和键中将具有旋转嵌入的百分比。qk_layernorm
(bool
, optional, defaults toFalse
) — 是否在投影隐藏状态后对查询和键进行归一化。bos_token_id
(int
, optional, defaults to 1) — 表示序列开始的标记 id。eos_token_id
(int
, optional, defaults to 2) — 表示序列结束的标记 id。
这是用于存储 PhiModel 配置的配置类。它用于根据指定的参数实例化 Phi 模型,定义模型架构。使用默认值实例化配置将产生类似于 Phi microsoft/phi-1的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
示例:
>>> from transformers import PhiModel, PhiConfig >>> # Initializing a Phi-1 style configuration >>> configuration = PhiConfig.from_pretrained("microsoft/phi-1") >>> # Initializing a model from the configuration >>> model = PhiModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
PytorchHide Pytorch content
PhiModel
class transformers.PhiModel
( config: PhiConfig )
参数
config
(PhiConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。配置 — PhiConfig
裸 Phi 模型输出原始隐藏状态,没有特定的头部。此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
由config.num_hidden_layers层组成的 Transformer 解码器。每一层都是一个PhiDecoderLayer
forward
( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)- 词汇表中输入序列标记的索引。默认情况下,如果提供了填充,将忽略填充。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 表示未被“屏蔽”的标记,
- 0 表示被“屏蔽”的标记。
- 什么是注意力掩码?
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
如果使用了past_key_values
,可以选择仅输入最后一个input_ids
(参见past_key_values
)。
如果要更改填充行为,应阅读modeling_opt._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。
- 1 表示头部是“未屏蔽的”,
- 0 表示头部被“屏蔽”。
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。
什么是位置 ID?past_key_values
(Cache
或tuple(tuple(torch.FloatTensor))
,可选)- 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。两种格式都允许:
- 一个 Cache 实例;
- 长度为
config.n_layers
的元组tuple(torch.FloatTensor)
,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为传统缓存格式。
- 模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,将返回传统的缓存格式。
如果使用了past_key_values
,用户可以选择仅输入最后一个形状为(batch_size, 1)
的input_ids
(这些input_ids
没有将它们的过去键值状态提供给此模型)而不是所有形状为(batch_size, sequence_length)
的input_ids
。 inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。use_cache
(bool
, optional) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
PhiModel 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
PhiForCausalLM
class transformers.PhiForCausalLM
( config )
forward
( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将被忽略。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 1 表示未被掩码的标记,
- 0 表示被掩码的标记。
- 什么是注意力掩码?
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
如果使用past_key_values
,可以选择仅输入最后的input_ids
(参见past_key_values
)。
如果要更改填充行为,应阅读modeling_opt._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图表 1。
- 1 表示头部未被掩码,
- 0 表示头部被掩码。
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。
什么是位置 ID?past_key_values
(Cache
或tuple(tuple(torch.FloatTensor))
,可选)— 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在解码的先前阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为传统缓存格式。
- 模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,则将返回传统缓存格式。
如果使用past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后input_ids
(这些input_ids
没有给定其过去键值状态的模型)而不是形状为(batch_size, sequence_length)
的所有input_ids
。 inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望更多地控制如何将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。use_cache
(bool
,可选)— 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参见past_key_values
)。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
参数 — 标签(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选):用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
或-100(请参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。
返回
transformers.modeling_outputs.CausalLMOutputWithPast 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个torch.FloatTensor
元组(如果传递return_dict=False
或当config.return_dict=False
时),包括根据配置(PhiConfig)和输入的不同元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)— 语言建模损失(用于下一个标记预测)。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块中的键和值),可用于加速顺序解码(请参见past_key_values
输入)。hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层的输出,则为一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
PhiForCausalLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, PhiForCausalLM >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") >>> prompt = "This is an example script ." >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
生成
( inputs: Optional = None generation_config: Optional = None logits_processor: Optional = None stopping_criteria: Optional = None prefix_allowed_tokens_fn: Optional = None synced_gpus: Optional = None assistant_model: Optional = None streamer: Optional = None negative_prompt_ids: Optional = None negative_prompt_attention_mask: Optional = None **kwargs ) → export const metadata = 'undefined';ModelOutput or torch.LongTensor
参数
inputs
(torch.Tensor
,根据模态性而变化的形状,可选) — 用作生成提示或作为编码器的模型输入的序列。如果为None
,则该方法将使用bos_token_id
和批量大小为 1 进行初始化。对于仅解码器模型,inputs
应为input_ids
格式。对于编码器-解码器模型,inputs可以表示input_ids
、input_values
、input_features
或pixel_values
中的任何一个。generation_config
(~generation.GenerationConfig
, 可选) — 用作生成调用的基本参数化的生成配置。与generation_config
属性匹配的**kwargs
传递给generate
将覆盖它们。如果未提供generation_config
,将使用默认值,其加载优先级如下:1)从generation_config.json
模型文件中,如果存在;2)从模型配置中。请注意,未指定的参数将继承 GenerationConfig 的默认值,应检查其文档以参数化生成。logits_processor
(LogitsProcessorList
, 可选) — 自定义 logits 处理器,补充了从参数和生成配置构建的默认 logits 处理器。如果传递了一个已经使用参数或生成配置创建的 logit 处理器,将会抛出错误。此功能适用于高级用户。stopping_criteria
(StoppingCriteriaList
, 可选) — 自定义停止标准,补充了从参数和生成配置构建的默认停止标准。如果传递了一个已经使用参数或生成配置创建的停止标准,将会抛出错误。如果您的停止标准依赖于scores
输入,请确保在调用generate
时传递return_dict_in_generate=True, output_scores=True
。此功能适用于高级用户。prefix_allowed_tokens_fn
(Callable[[int, torch.Tensor], List[int]]
, 可选) — 如果提供,此函数将在每一步将束搜索限制为仅允许的标记。如果未提供,则不应用约束。此函数接受 2 个参数:批次 IDbatch_id
和input_ids
。它必须返回一个列表,其中包含下一代步骤的允许标记,条件是批次 IDbatch_id
和先前生成的标记inputs_ids
。此参数对于受前缀约束的生成很有用,如自回归实体检索中所述。synced_gpus
(bool
, optional) — 是否继续运行 while 循环直到 max_length。除非被覆盖,否则在 DeepSpeed ZeRO Stage 3 多 GPU 环境下,此标志将设置为True
,以避免一个 GPU 在其他 GPU 之前生成完成时挂起。否则,它将设置为False
。assistant_model
(PreTrainedModel
, optional) — 一个助理模型,可用于加速生成。助理模型必须具有完全相同的分词器。当使用助理模型预测候选标记比使用您调用 generate 的模型运行生成要快得多时,加速就会实现。因此,助理模型应该要小得多。streamer
(BaseStreamer
, optional) — 将用于流式传输生成的序列的 Streamer 对象。生成的标记通过streamer.put(token_ids)
传递,Streamer 负责任何进一步的处理。negative_prompt_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 一些处理器(如 CFG)需要的负向提示。批量大小必须与输入批量大小匹配。这是一个实验性功能,可能在未来版本中会有破坏性的 API 更改。negative_prompt_attention_mask
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于negative_prompt_ids
的 Attention_mask。kwargs
(Dict[str, Any]
, optional) —generate_config
的特定参数化和/或将转发到模型的forward
函数的其他模型特定 kwargs。如果模型是编码器-解码器模型,则编码器特定的 kwargs 不应该有前缀,解码器特定的 kwargs 应该以*decoder_*为前缀。
返回
ModelOutput 或torch.LongTensor
一个 ModelOutput(如果return_dict_in_generate=True
或者config.return_dict_in_generate=True
)或者一个torch.FloatTensor
。
如果模型不是编码器-解码器模型(model.config.is_encoder_decoder=False
),可能的 ModelOutput 类型为:
- GenerateDecoderOnlyOutput,
- GenerateBeamDecoderOnlyOutput
如果模型是编码器-解码器模型(model.config.is_encoder_decoder=True
),可能的 ModelOutput 类型为:
- GenerateEncoderDecoderOutput,
- GenerateBeamEncoderDecoderOutput
为具有语言建模头的模型生成标记 id 序列。
大多数控制生成的参数都在generation_config
中设置,如果未传递,则将设置为模型的默认生成配置。您可以通过将相应的参数传递给 generate()来覆盖任何generation_config
,例如.generate(inputs, num_beams=4, do_sample=True)
。
有关生成策略和代码示例的概述,请查看以下指南。
PhiForSequenceClassification
class transformers.PhiForSequenceClassification
( config )
参数
config
(PhiConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
PhiModel 在顶部具有序列分类头(线性层)。
PhiForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-2)一样。
由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id
,则会找到每行中不是填充标记的最后一个标记。如果未定义pad_token_id
,则会简单地取批处理中每行的最后一个值。当传递inputs_embeds
而不是input_ids
时,无法猜测填充标记,因此会执行相同操作(取批处理中每行的最后一个值)。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 输入序列标记在词汇表中的索引。默认情况下,提供填充将被忽略。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()获取详细信息。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选)— 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 1 表示标记未被遮蔽,
- 0 表示被遮蔽的标记。
- 什么是注意力掩码?
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()获取详细信息。
如果使用past_key_values
,则可选择仅输入最后的input_ids
(参见past_key_values
)。
如果要更改填充行为,应阅读modeling_opt._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]
中选择。
什么是位置 ID?past_key_values
(Cache
或tuple(tuple(torch.FloatTensor))
, optional) — 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量。这也被称为传统的缓存格式。
- 模型将输出与输入相同的缓存格式。如果未传递
past_key_values
,则将返回传统的缓存格式。
如果使用past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个input_ids
(这些input_ids
不具有其过去的键值状态给予此模型)而不是形状为(batch_size, sequence_length)
的所有input_ids
。 inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果要更好地控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参见past_key_values
)。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。labels
(torch.LongTensor
,形状为(batch_size,)
,optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
PhiForSequenceClassification 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
PhiForTokenClassification
class transformers.PhiForTokenClassification
( config: PhiConfig )
参数
config
(PhiConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有标记分类头的 PhiModel(隐藏状态输出顶部的线性层),例如用于命名实体识别(NER)任务。
该模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
该模型还是 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **deprecated_arguments ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 输入序列标记在词汇表中的索引。默认情况下将忽略填充。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选)— 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
:
- 对于未被掩码的标记,标记为 1,
- 对于被掩码的标记,标记为 0。
- 什么是注意力掩码?
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
如果使用past_key_values
,则可以选择仅输入最后的input_ids
(参见past_key_values
)。
如果要更改填充行为,应阅读modeling_opt._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。
- 1 表示头部未被掩码,
- 0 表示头部被掩码。
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]
。
什么是位置 ID?past_key_values
(Cache
或tuple(tuple(torch.FloatTensor))
,可选)— 预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。这通常包括模型在先前解码阶段返回的past_key_values
,当use_cache=True
或config.use_cache=True
时。允许两种格式:
- 一个 Cache 实例;
- 长度为
config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量)。这也被称为传统的缓存格式。
- 该模型将输出与输入相同的缓存格式。如果没有传递
past_key_values
,则将返回传统的缓存格式。
如果使用past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后的input_ids
(这些没有将其过去的键值状态提供给该模型)而不是形状为(batch_size, sequence_length)
的所有input_ids
。 inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。use_cache
(bool
, 可选) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通元组。labels
(torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或者当config.return_dict=False
时)包含根据配置(PhiConfig)和输入的不同元素。
loss
(torch.FloatTensor
,形状为(1,)
,可选, 当提供labels
时返回) — 分类损失。logits
(torch.FloatTensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或者当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或者当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
PhiForTokenClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, PhiForTokenClassification >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") >>> model = PhiForTokenClassification.from_pretrained("microsoft/phi-1") >>> inputs = tokenizer( ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" ... ) >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_token_class_ids = logits.argmax(-1) >>> # Note that tokens are classified rather then input words which means that >>> # there might be more predicted token classes than words. >>> # Multiple token classes might account for the same word >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] >>> labels = predicted_token_class_ids >>> loss = model(**inputs, labels=labels).loss
Transformers 4.37 中文文档(五十一)(4)https://developer.aliyun.com/article/1565778