【c++】模板进阶

简介: 本文详细介绍了C++中的模板技术,包括非类型模板参数的概念、如何使用它解决静态栈的问题,以及模板特化,如函数模板特化和类模板特化的过程,以提升代码的灵活性和针对性。同时讨论了模板可能导致的代码膨胀和编译时间增加的问题。

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c++,Python等

> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:了解非类型模板参数,熟练使用模板的特化。

> 毒鸡汤:你活得不快乐的原因是:既无法忍受目前的状态,又没能力改变这一切。

> 望小伙伴们点赞👍收藏✨加关注哟💕💕  



🌟前言  

早期我们学习了模板,只能说浅学,很多重要的知识点都没有讲解,今天我们来深度讲解模板。



⭐主体

学习模板的进阶我们按照下面的图解来学习:


🌙非类型模板参数

模板参数分为: 类型形参与非类型形参

  1. 类型形参:出现在模板参数列表中,跟在class或者typename之类的参数类型名称后面
  2. 非类型形参:就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用


类型形参:

// T: 类型模板参数,它是一个类型
template <class T> class A;


非类型形参:

// T: 类型模板参数,它是一个类型
// N: 非类型模板参数,它是一个常量
template <class T, size_t N = 10> class A;


实例举例:

#define N 10
template<class T> // 静态栈
class Stack {
private:
  T _a[N];
  size_t _top;
};
 
void test()
{
  Stack<int> st1; // 10
  Stack<int> st2; // 10
}


问题分析:

现在实现了一个静态栈,可以存 10 个数据,实例化的每个对象都可以存 10 个数据,如果我想要第一个对象 st1 存 100 个数据,第二个对象存 200 个数据,这种结构就非常的不好。


问题解决:

此时就需要用到非类型模板参数了

template<class T, size_t N> // 静态栈
class Stack {
private:
  T _a[N];
  size_t _top;
};
 
void test()
{
  Stack<int, 100> st1; // 100
  Stack<int, 200> st2; // 200
}


注意事项:

  • 浮点数、类对象以及字符串是不允许作为非类型模板参数的
  • 非类型的模板参数必须在编译期就能确认结果


(因为模板是在编译阶段就要实例化的,而模板必须要知道实例化成的具体类型之后才能实例化,

因此非类型模板参数和类型模板参数一样,必须在编译阶段就能够确认实例化成的具体类型才可以,

否则编译阶段无法完成实例化,链接阶段就找不到实例化出的具体的类,进而发生链接错误)


🌙模板的特化

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板。


💫问题探讨

比如:交换两个元素

template<class T>
void Swap(T& x, T& y)
{
    T tmp(x); x = y; y = tmp;
}
 
void test()
{
    int x = 1, y = 2;
    Swap(x, y);
 
    vector<int> v1 = { 1, 2, 3, 4 };
    vector<int> v2 = { 10, 20, 30, 40 };
    Swap(v1, v2); // 深拷贝式交换,代价太大,效率低
}


解决方案一:函数的匹配原则,写一个专门针对 vector 类型对象交换的函数:推荐这种

// 函数匹配原则,专门针对 vector<int> 类型对象交换的函数 -- 推荐这种
void Swap(vector<int>& v1, vector<int>& v2)
{
    v1.swap(v2); // 只需要交换对象内部的几个指针即可
}


解决方案二:函数模板的特化,针对 vector 类型对象的交换进行特殊化处理:

// 函数模板的特化(针对某些具体类型进行特殊化处理) -- 最后还是要经过模板推演
template<>
void Swap<vector<int>>(vector<int>& v1, vector<int>& v2)
{
    v1.swap(v2);
}


问题拓展:

此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化分为:函数模板特化与类模板特化。


💫函数特化步骤

函数模板的特化步骤:

  1. 必须要先有一个基础的函数模板。
  2. 关键字 template 后面接一对空的尖括号 <>
  3. 函数名后跟一对尖括号 <>,尖括号中指定需要特化的类型。
  4. 函数形参表:必须要和 <> 中指定的类型完全相同,如果不同,编译器可能会报一些奇怪的错误。


小试牛刀:

template<class T1, class T2>  // 基础函数模板
void add(T1& x, T2& y)
{
  cout << "void add(T1& x, T2& y)" << endl;
}
 
template<>
void add<int, char>(int& x, char& y)  // 函数模板的特化
{
  cout << "void add<int, char>" << endl;
}
 
void test()
{
  int a = 1, b = 2;
  add(a, b);   // 走基础函数模板
 
  int c = 1;
  char d = 'a';
  add(c, d); // 走特化的void add<int, char>版本
}


💫类模板特化步骤

类模板的特化步骤:

  1. 必须要先有一个基础的类模板。
  2. 关键字 template 后面接一对空的尖括号 <>
  3. 类名后跟一对尖括号 <>,尖括号中指定需要特化的类型。


类模板的特化分为:全特化偏特化

全特化:将模板参数列表中所有的参数都确定化。

template<class T1, class T2> // 基础类模板
class Data
{
public:
  Data() { cout << "Data<T1, T2>" << endl; }
private:
  T1 _d1;
  T2 _d2;
};
 
// 类模板的全特化 -- 最后还是要经过模板推演
// 将所有参数都确定化
template<>
class Data<double, double>
{
public:
  Data() { cout << "Data<double, double>" << endl; }
private:
  double _d1;
  double _d2;
};
 
void test()
{
  Data<int, int> d1;       // 走基础类模板
  Data<double, double> d2; // 走特化的double版本
}


偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。

template<class T1, class T2> // 基础类模板
class Data
{
public:
  Data() { cout << "Data<T1, T2>" << endl; }
private:
  T1 _d1;
  T2 _d2;
};


①将模板参数类表中的一部分参数特化。

// 类模板的偏特化
// 将部分参数确定化
template<class T1>
class Data<T1, char>
{
public:
  Data() { cout << "Data<T, char>" << endl; }
private:
  T1 _d1;
  char _d2;
};
 
void test()
{
  Data<int, int> d1;  // 走基础类模板
  Data<int, char> d3; // 走特化版本
}


②参数更进一步的限制,针对模板参数更进一步的条件限制所设计出来的一个特化版本:

// 不一定式特化部分参数,而是对参数更进一步的限制
// 两个参数偏特化为指针类型
template<class T1, class T2>
class Data<T1*, T2*>
{
public:
  Data() { cout << "Data<T1*, T2*>" << endl; }
private:
  T1* _d1;
  T2* _d2;
};
 
// 两个参数偏特化为引用类型
template<class T1, class T2>
class Data<T1&, T2&>
{
public:
  Data(const T1& d1, const T2& d2)
    :_d1(d1)
    , _d2(d2)
  {
    cout << "Data<T1&, T2&>" << endl;
  }
private:
  const T1& _d1;
  const T2& _d2;
};
 
void test()
{
  Data<int, int> d1;         // 调用基础的类模板
 
  // 不管显示实例化什么类型的指针都可以
  Data<int*, char*> d4;      // 调用特化的指针版本
  Data<int*, int*> d5;       // 调用特化的指针版本
 
  // 不管显示实例化什么类型的引用都可以
  Data<int&, int&> d6(1, 2); // 调用特化的引用版本
}


💫匹配顺序

模板参数的匹配原则:

  • 会优先匹配更匹配的
  • 如果跟全特化匹配,就匹配全特化
  • 否则如果跟偏特化更匹配,就匹配偏特化
  • 如果跟偏特化也不匹配,就匹配原模板


🌙模板分离编译

💫概念

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。


💫模板的分离编译

假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

// func.h
template<class T>
T Add(const T& x, const T& y);
 
// func.cpp
#include"func.h"
template<class T>
T Add(const T& x, const T& y)
{
  return x + y;
}
 
// main.cpp
#include"func.h"
int main()
{
  Add(1, 2);
  Add(1.0, 2.0);
  return 0;
}


此段代码运行会报链接错误(链接错误一般是指在链接阶段找不到该函数的定义)


C/C++程序要运行,一般要经历一下步骤:预处理 --> 编译 --> 汇编 --> 链接



这里就不再讲解C++编译过程,具体可以参考这篇博客:Linux编辑器-gcc/g++使用-CSDN博客


优化设计:

  • 不分离编译,将声明和定义放到一个文件 “xxx.h” 中,这样头文件展开后,main.cpp 中就有函数的定义,链接时就不需要去找函数的地址了,推荐使用这种。
  • 在模板定义的位置显式指定实例化。用一个类型就得显式实例化一个类型,很麻烦,不实用,不推荐使用。
// func.h
template<class T>
T Add(const T& x, const T& y); // 函数模板的声明
 
// func.cpp
#include"func.h"
template<class T>
T Add(const T& x, const T& y) // 函数模板的实现
{
  return x + y;
}
template
int Add(const int& x, const int& y); // 显示实例化函数模板
template
double Add(const double& x, const double& y); // 显示实例化函数模板
 
// main.cpp
#include"func.h"
int main()
{
  Add(1, 2);     // call Add<int>
  Add(1.0, 2.0); // call Add<double>
  return 0;
}


🌙模板总结

优点

  1. 模板复用了代码,节省资源,可以更快的迭代开发,C++的标准模板库(STL)因此而产生。
  2. 增强了代码的灵活性。


缺陷

  1. 模板会导致代码膨胀问题,也会导致编译时间变长。
  2. 出现模板编译错误时,错误信息非常凌乱,不易定位错误。


模板这个语法整体而言肯定是优点远大于缺点。


🌟结束语

      今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。


目录
相关文章
|
1月前
|
程序员 C++
C++模板元编程入门
【7月更文挑战第9天】C++模板元编程是一项强大而复杂的技术,它允许程序员在编译时进行复杂的计算和操作,从而提高了程序的性能和灵活性。然而,模板元编程的复杂性和抽象性也使其难以掌握和应用。通过本文的介绍,希望能够帮助你初步了解C++模板元编程的基本概念和技术要点,为进一步深入学习和应用打下坚实的基础。在实际开发中,合理运用模板元编程技术,可以极大地提升程序的性能和可维护性。
|
2月前
|
安全 编译器 C++
C++一分钟之-编译时计算:constexpr与模板元编程
【6月更文挑战第28天】在C++中,`constexpr`和模板元编程用于编译时计算,提升性能和类型安全。`constexpr`指示编译器在编译时计算函数或对象,而模板元编程通过模板生成类型依赖代码。常见问题包括误解constexpr函数限制和模板递归深度。解决策略包括理解规则、编写清晰代码、测试验证和适度使用。通过实战示例展示了如何使用`constexpr`计算阶乘和模板元编程计算平方。
50 13
|
1月前
|
存储 编译器 C++
【C++】详解C++的模板
【C++】详解C++的模板
|
6天前
|
编译器 C++
【C++】模板初级
【C++】模板初级
|
6天前
|
安全 编译器 C++
【C++】模板进阶
【C++】模板进阶
|
29天前
|
编译器 C++ 容器
C++一分钟之-可变模板参数与模板模板参数
【7月更文挑战第21天】C++的模板实现泛型编程,C++11引入可变模板参数和模板模板参数增强其功能。可变模板参数(如`print`函数)用于处理任意数量的参数,需注意展开参数包和递归调用时的处理。模板模板参数(如`printContainer`函数)允许将模板作为参数,需确保模板参数匹配和默认值兼容。这些特性增加灵活性,但正确使用是关键。
32 4
|
1月前
|
安全 编译器 C++
C++一分钟之-模板元编程实例:类型 traits
【7月更文挑战第15天】C++的模板元编程利用编译时计算提升性能,类型traits是其中的关键,用于查询和修改类型信息。文章探讨了如何使用和避免过度复杂化、误用模板特化及依赖特定编译器的问题。示例展示了`is_same`类型trait的实现,用于检查类型相等。通过`add_pointer`和`remove_reference`等traits,可以构建更复杂的类型转换逻辑。类型traits增强了代码效率和安全性,是深入C++编程的必备工具。
42 11
|
1月前
|
C++ 开发者
C++一分钟之-编译时计算:constexpr与模板元编程
【7月更文挑战第2天】C++的`constexpr`和模板元编程(TMP)实现了编译时计算,增强代码效率。`constexpr`用于声明编译时常量表达式,适用于数组大小等。模板元编程则利用模板进行复杂计算。常见问题包括编译时间过长、可读性差。避免方法包括限制TMP使用,保持代码清晰。结合两者可以解决复杂问题,但需明确各自适用场景。正确使用能提升代码性能,但需平衡复杂性和编译成本。
57 3
|
1月前
|
编译器 C语言 C++
【C++】模板初阶(下)
C++的函数模板实例化分为隐式和显式。隐式实例化由编译器根据实参推断类型,如`Add(a1, a2)`,但`Add(a1, d1)`因类型不一致而失败。显式实例化如`Add&lt;double&gt;(a1, d1)`则直接指定类型。模板函数不支持自动类型转换,优先调用非模板函数。类模板类似,用于创建处理多种数据类型的类,如`Vector&lt;T&gt;`。实例化类模板如`Vector&lt;int&gt;`和`Vector&lt;double&gt;`创建具体类型对象。模板使用时,函数模板定义可分头文件和实现文件,但类模板通常全部放头文件以避免链接错误。
|
1月前
|
机器学习/深度学习 算法 编译器
【C++】模板初阶(上)
**C++模板简介** 探索C++泛型编程,通过模板提升代码复用。模板作为泛型编程基础,允许编写类型无关的通用代码。以`Swap`函数为例,传统方式需为每种类型编写单独函数,如`Swap(int&)`、`Swap(double&)`等,造成代码冗余。函数模板解决此问题,如`template&lt;typename T&gt; void Swap(T&, T&)`,编译器根据实参类型推导生成特定函数,减少重复代码,增强可维护性。模板分函数模板和类模板,提供处理不同数据类型但逻辑相似的功能。