1.内联函数
C语言中我们学习了宏定义,其实我们在学习的过程中认为宏定义是很不错的,但是我们下面要讲解宏的缺点
1.1前言(引出内联函数)
①写一个Add函数的宏定义
#define _CRT_SECURE_NO_WARNINGS 1 #define ADD(int x, int y) return x + y; #define ADD(x, y) return x + y; #define ADD(x, y) x + y; #define ADD(x, y) (x + y) #define ADD(x, y) (x) + (y) #define ADD(x, y) ((x) + (y)); #define ADD(x, y) ((x) + (y))//正确写法 int main() { int ret = ADD(2, 3)*5;//加外面()理由 //为什么要里面加(),总结下面图片可以看出, //如果是表达式涉及优先级,就会出现问题 return 0; }
总结:
1.宏是一种替换
2.宏定义后面不能加‘’ ; ”
②宏的缺点
1.容易出错,语法细节多
2.不能调试(宏在预处理阶段就被处理(替换)了),如下图
3.没有类型安全的检查
③C++对宏的态度
用enum(枚举) const inline (内联)替代宏
1.enum const 替代宏常量
2. inline 替代宏函数
#define ADD(x, y) ((x) + (y)) inline int Add(int x, int y) { int c = x + y; return c; } int main() { int ret1 = Add(1, 2); // 内联函数优点:不用建立栈帧,提高效率 int ret2 = ADD(1, 2); return 0; }
1.2内联函数
①概念
以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。
内联函数几乎克服了上面说的宏的缺点
注意:
内联函数默认情况不会展开,我们需要设置下(vs2022)
②内联函数特性
- inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用
缺陷:
可能会使目标文件变大优势:
少了调用开销,提高程序运行效率。 - inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为《C++prime》第五版关于inline的建议:
内联说明只是向编译器发出的一个请求,编译器可以选择忽略这个请求。
一般来说,内联机制用于优化规模较小、流程直接、频繁调用的函数。很多编译器都不支持内联递归函数,而且一个75行的函数也不大可能在调用点内联地展开
- inline不建议
声明和定义分离
,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到
2.auto关键字(C++11)
① 类型别名思考
随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:
- 类型难于拼写
- 含义不明确导致容易出错
#include <string> #include <map> int main() { std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange", "橙子" }, {"pear","梨"} }; std::map<std::string, std::string>::iterator it = m.begin(); while (it != m.end()) { //.... } return 0; }
std::map<std::string, std::string>::iterator
是一个类型,但是该类型太长了,特别容易写错。有人可能已经想到:可以通过typedef给类型取别名,比如:
#include <string> #include <map> typedef std::map<std::string, std::string> Map; int main() { Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} }; Map::iterator it = m.begin(); while (it != m.end()) { //.... } return 0; }
使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:
typedef char* pstring; int main() { const pstring p1; // 编译成功还是失败? const pstring* p2; // 编译成功还是失败? return 0; }
在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义
② auto简介
在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。
int TestAuto() { return 10; } int main() { int a = 10; auto b = a; auto c = 'a'; auto d = TestAuto(); cout << typeid(b).name() << endl; cout << typeid(c).name() << endl; cout << typeid(d).name() << endl; //auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化 return 0; }
【注意】
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。
因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。
③ auto的使用细则
- auto与指针和引用结合起来使用用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&
int main() { int x = 10; auto a = &x; auto* b = &x; auto& c = x; cout << typeid(a).name() << endl; cout << typeid(b).name() << endl; cout << typeid(c).name() << endl; *a = 20; *b = 30; c = 40; return 0; }
- 在同一行定义多个变量
当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
void TestAuto() { auto a = 1, b = 2; auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同 }
④ auto不能推导的场景
- auto不能作为函数的参数
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导 void TestAuto(auto a) {}
- auto不能直接用来声明数组
void TestAuto() { int a[] = {1,2,3}; auto b[] = {4,5,6}; }
- 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
- auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有
lambda表达式等进行配合使用。
3. 基于范围的for循环(C++11)
① 范围for的语法
在C++98中如果要遍历一个数组,可以按照以下方式进行:
void TestFor() { int array[] = { 1, 2, 3, 4, 5 }; for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i) array[i] *= 2; for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p) cout << *p << endl; }
对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。
void TestFor() { int array[] = { 1, 2, 3, 4, 5 }; for(auto& e : array) e *= 2; for(auto e : array) cout << e << " "; return 0; }
注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。
② 范围for的使用条件
- for循环迭代的范围必须是确定的
对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的方法,begin和end就是for循环迭代的范围。
注意:以下代码就有问题,因为for的范围不确定
void TestFor(int array[]) { for(auto& e : array) cout<< e <<endl; }
- 迭代的对象要实现++和==的操作。
(关于迭代器这个问题,以后会讲,现在提一下,没办法讲清楚,现在大家了解一下就可以了)
4.指针空值nullptr(C++11)
①C++98中的指针空值
在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:
void TestPtr() { int* p1 = NULL; int* p2 = 0; // …… }
NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
#ifndef NULL #ifdef __cplusplus #define NULL 0 #else #define NULL ((void *)0) #endif #endif
可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:
void f(int) { cout<<"f(int)"<<endl; } void f(int*) { cout<<"f(int*)"<<endl; } int main() { f(0); f(NULL); f((int*)NULL); return 0; }
程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。
在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void*)0。
注意:
1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。
2. 在C++11中,sizeof(nullptr) 与 sizeof((void)0)所占的字节数相同。
3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。