二次查询过程

简介: 【7月更文挑战第8天】

二次查询
这一次查询需要利用上一步找出来的最小值以及各自分库的最大值来构造BETWEEN查询,改写得到的SQL是:

SELECT * FROM order_tab_0 WHERE id BETWEEN 4 AND 12
SELECT * FROM order_tab_1 WHERE id BETWEEN 4 AND 11

结果:

  • order_tab_0 返回 4、6、10、12。
  • order_tab_1 返回 5、7、8、9、11,也就是多了 1 条数据,记住这一点。

取过来的所有数据排序之后就是4、5、6、7、8、9、10、11、12

计算最小值的全局偏移量
核心是:根据BETWEEN中多出来的数据量来推断全局偏移量

现在我们知道4在order_tab_0中的偏移量是2,也就是说比4小的数据有2条。
在BETWEEN查询里,order_tab_1返回的结果是5,7,8,9,11,其中7在第一次查询里的偏移量是2,所以5的偏移量是1。也就是说,5的前面只有一条比4小的数据。
那么4在order_tab中的全局偏移量就是1+2=3,也就是4前面有三条数据。

加上4本身,刚好构成了OFFSET 4,因此从5开始取,往后取4条数据。

总结

简化版本:

  1. 首次查询,拿到最小值
  2. 二次查询,确实最小值的全局偏移量
  3. 在二次查询的结果里根据最小值取到符合偏移量的数据
目录
相关文章
|
Java
Java中文汉字转拼音
实现方法多样,在此列举两种,一种是比较简单,但是实现自定义稍差,还有一种就是自己写实现逻辑
5641 0
|
canal 缓存 NoSQL
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
根据对一致性的要求程度,提出多种解决方案:同步删除、同步删除+可靠消息、延时双删、异步监听+可靠消息、多重保障方案
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
|
文字识别 计算机视觉 开发者
基于QT的OCR和opencv融合框架FastOCRLearn实战
本文介绍了在Qt环境下结合OpenCV库构建OCR识别系统的实战方法,通过FastOCRLearn项目,读者可以学习Tesseract OCR的编译配置和在Windows平台下的实践步骤,文章提供了技术资源链接,帮助开发者理解并实现OCR技术。
841 9
基于QT的OCR和opencv融合框架FastOCRLearn实战
|
消息中间件
分布式篇问题之通过本地消息表实现分布式事务的最终一致性问题如何解决
分布式篇问题之通过本地消息表实现分布式事务的最终一致性问题如何解决
558 0
|
存储 SQL 关系型数据库
(二十三)MySQL分表篇:该如何将月增上亿条数据的单表处理方案优雅落地?
前面《分库分表的正确姿势》、《分库分表的后患问题》两篇中,对数据库的分库分表技术进行了全面阐述,但前两篇大多属于方法论,并不存在具体的实战实操,而只有理论没有实践的技术永远都属纸上谈兵,所以接下来会再开几个单章对分库分表各类方案进行落地。
1296 3
|
Kubernetes 应用服务中间件 nginx
史上最全干货!Kubernetes 原理+实战总结(全文6万字,90张图,100个知识点)(上)
史上最全干货!Kubernetes 原理+实战总结(全文6万字,90张图,100个知识点)
52994 30
|
设计模式 存储 缓存
JDK中都用了哪些设计模式?
JDK中都用了哪些设计模式?
232 7
|
SQL Java 数据库
面试必问之spring事务
面试必问之spring事务
295 0
|
Java 数据库 Spring
(JAVA)服务端实现检查当前用户连续签到天数、是否连续签到等业务
(JAVA)服务端实现检查当前用户连续签到天数、是否连续签到等业务
485 0
|
Ubuntu 关系型数据库 Linux
PostgreSQL 入门教程,适用于初学者
PostgreSQL 入门教程,适用于初学者