Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-(2)

简介: Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-

Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-(1)https://developer.aliyun.com/article/1564738


FlaubertForSequenceClassification

class transformers.FlaubertForSequenceClassification

<来源>

( config )

参数

  • config (FlaubertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

在顶部有一个用于序列分类/回归的 Flaubert 模型(在汇总输出的顶部有一个线性层),例如用于 GLUE 任务。

这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None langs: Optional = None token_type_ids: Optional = None position_ids: Optional = None lengths: Optional = None cache: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:
  • 0 对应于一个 句子 A 的标记,
  • 1 对应于一个 句子 B 的标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
    什么是位置 ID?
  • lengths (torch.LongTensor,形状为 (batch_size,)可选) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。您也可以使用 attention_mask 获得相同的结果(见上文),这里保留是为了兼容性。索引在 [0, ..., input_ids.size(-1)] 中选择:
  • cacheDict[str, torch.FloatTensor]可选)- 包含由模型计算的预计算隐藏状态(注意力块中的键和值)的字符串到torch.FloatTensor的字典对象(请参见下面的cache输出)。可用于加速顺序解码。在前向传递期间,字典对象将被就地修改以添加新计算的隐藏状态。
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]范围内:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您希望更多地控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)- 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回值

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.SequenceClassifierOutput 或torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False,则包括根据配置(FlaubertConfig)和输入而异的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)- 分类(或如果config.num_labels==1则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor)- 分类(或如果config.num_labels==1则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(用于嵌入层的输出和每层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaubertForSequenceClassification 的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, FlaubertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类的示例:

>>> import torch
>>> from transformers import AutoTokenizer, FlaubertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FlaubertForSequenceClassification.from_pretrained(
...     "flaubert/flaubert_base_cased", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

FlaubertForMultipleChoice

class transformers.FlaubertForMultipleChoice

<来源>

( config *inputs **kwargs )

参数

  • config(FlaubertConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Flaubert 模型在顶部具有多选分类头(池化输出上的线性层和 softmax),例如用于 RocStories/SWAG 任务。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None langs: Optional = None token_type_ids: Optional = None position_ids: Optional = None lengths: Optional = None cache: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
  • 1 表示未被掩盖的标记,
  • 0 表示被掩盖的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]之间。
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • lengths(形状为(batch_size,)torch.LongTensor可选)— 每个句子的长度,可用于避免在填充标记索引上执行注意力。您也可以使用attention_mask获得相同的结果(见上文),这里保留以保持兼容性。索引选择在[0, ..., input_ids.size(-1)]之间:
  • cacheDict[str, torch.FloatTensor]可选)— 包含由模型计算的预计算隐藏状态(注意力块中的键和值)的字符串到torch.FloatTensor的字典。可用于加速顺序解码。在前向传递期间,字典对象将被就地修改以添加新计算的隐藏状态。
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选在[0, 1]范围内:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels(形状为(batch_size,)torch.LongTensor可选)— 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]范围内,其中num_choices是输入张量的第二维的大小。(参见上面的input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或者一个torch.FloatTensor元组(如果传递了return_dict=False或者config.return_dict=False时)包含不同的元素,取决于配置(FlaubertConfig)和输入。

  • loss(形状为*(1,)*的torch.FloatTensor可选,当提供labels时返回)— 分类损失。
  • logits(形状为(batch_size, num_choices)torch.FloatTensor)— num_choices是输入张量的第二维。(参见上面的input_ids)。
    分类得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或者config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出的输出+每层的输出)。
    模型在每层输出的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或者config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaubertForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaubertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForMultipleChoice.from_pretrained("flaubert/flaubert_base_cased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

FlaubertForTokenClassification

class transformers.FlaubertForTokenClassification

<来源>

( config )

参数

  • config(FlaubertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Flaubert 模型,顶部带有一个标记分类头(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None langs: Optional = None token_type_ids: Optional = None position_ids: Optional = None lengths: Optional = None cache: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。
    什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
  • 1 表示未被掩码的标记,
  • 0 表示被掩码的标记。
  • 什么是注意力掩码?
  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:
  • 0 对应于句子 A标记,
  • 1 对应于句子 B标记。
  • 什么是标记类型 ID?
  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
    什么是位置 ID?
  • lengths(形状为(batch_size,)torch.LongTensor可选)— 每个句子的长度,可用于避免在填充标记索引上执行注意力。您也可以使用attention_mask获得相同的结果(见上文),这里保留以保持兼容性。索引选择在[0, ..., input_ids.size(-1)]中:
  • cacheDict[str, torch.FloatTensor]可选)— 包含由模型计算的预计算隐藏状态(注意力块中的键和值)的torch.FloatTensor字符串字典(请参见下面的cache输出)。可用于加速顺序解码。在前向传递期间,字典对象将被就地修改以添加新计算的隐藏状态。
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。在[0, 1]中选择的掩码值:
  • 1 表示头部“未屏蔽”,
  • 0 表示头部“已屏蔽”。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为关联向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size, sequence_length)torch.LongTensor可选)— 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]中。

返回

transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.TokenClassifierOutput 或torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(FlaubertConfig)和输入的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 分类损失。
  • logits(形状为(batch_size, sequence_length, config.num_labels)torch.FloatTensor)— 分类分数(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每个层的输出)的形状为(batch_size, sequence_length, hidden_size)
    模型在每个层的输出以及可选的初始嵌入输出的隐藏状态。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— torch.FloatTensor元组(每个层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaubertForTokenClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是调用此函数,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaubertForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForTokenClassification.from_pretrained("flaubert/flaubert_base_cased")
>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

FlaubertForQuestionAnsweringSimple

class transformers.FlaubertForQuestionAnsweringSimple

< source >

( config 

参数

  • config (FlaubertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

Flaubert 模型在顶部具有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的顶部有一个线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个 PyTorch torch.nn.Module 子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None langs: Optional = None token_type_ids: Optional = None position_ids: Optional = None lengths: Optional = None cache: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1]:
  • 1 表示未被遮蔽的标记,
  • 0 表示被遮蔽的标记。
  • 什么是注意力掩码?
  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,用于指示输入的第一部分和第二部分。索引选择在 [0, 1]:
  • 0 对应于 句子 A 标记,
  • 1 对应于 句子 B 标记。
  • 什么是标记类型 ID?
  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.max_position_embeddings - 1]
    什么是位置 ID?
  • lengths (torch.LongTensor of shape (batch_size,), optional) — 每个句子的长度,可用于避免在填充标记索引上执行注意力。您也可以使用 attention_mask 来获得相同的结果(见上文),这里保留是为了兼容性。所选索引范围为 [0, ..., input_ids.size(-1)]:
  • cache (Dict[str, torch.FloatTensor], optional) — 包含由模型计算的预计算隐藏状态(关键和值在注意力块中)的 torch.FloatTensor 字典字符串(请参见下面的 cache 输出)。可用于加速顺序解码。在前向传递期间,字典对象将被就地修改以添加新计算的隐藏状态。
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在 [0, 1]:
  • 1 表示头部未被遮蔽,
  • 0 表示头部被遮蔽。
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
  • start_positions (torch.LongTensor,形状为(batch_size,)可选) — 用于计算标记跨度起始位置的位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内计算损失。
  • end_positions (torch.LongTensor,形状为(batch_size,)可选) — 用于计算标记跨度结束位置的位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内计算损失。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(FlaubertConfig)和输入的不同元素。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。
  • start_logits (torch.FloatTensor,形状为(batch_size, sequence_length)) — 跨度起始分数(SoftMax 之前)。
  • end_logits (torch.FloatTensor,形状为(batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出加上每层的输出)。
    模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaubertForQuestionAnsweringSimple 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaubertForQuestionAnsweringSimple
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForQuestionAnsweringSimple.from_pretrained("flaubert/flaubert_base_cased")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss


Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-(3)https://developer.aliyun.com/article/1564740

相关文章
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(二十八)(2)
Transformers 4.37 中文文档(二十八)
34 2
|
4月前
|
自然语言处理 TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-(3)
Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-
29 0
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-(4)
Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-
26 0
|
4月前
|
自然语言处理 PyTorch API
Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-(1)
Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-
44 0
|
4月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十一)(4)
Transformers 4.37 中文文档(三十一)
35 0
|
4月前
|
缓存 数据挖掘 PyTorch
Transformers 4.37 中文文档(三十一)(3)
Transformers 4.37 中文文档(三十一)
39 0
|
4月前
|
存储 PyTorch TensorFlow
Transformers 4.37 中文文档(三十一)(1)
Transformers 4.37 中文文档(三十一)
43 0
|
4月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(三十一)(2)
Transformers 4.37 中文文档(三十一)
36 0
|
4月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十一)(5)
Transformers 4.37 中文文档(三十一)
32 0
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十四)(4)
Transformers 4.37 中文文档(三十四)
22 0
下一篇
无影云桌面