为什么TCP需要三次握手?一文讲透!

简介: **TCP三次握手摘要**TCP三次握手是建立可靠TCP连接的过程,包括:1. 客户端发送SYN包,进入SYN_SENT状态。2. 服务端回应SYN和ACK包,进入SYN_RCVD状态。3. 客户端再次发送ACK包,双方进入ESTABLISHED状态,连接建立。三次握手确保双方都能发送和接收数据,防止失效请求导致的资源浪费,并同步序列号以确保可靠性。

哈喽,小伙伴们!今天小米要给大家带来的是网络基础中的一颗明珠——TCP三次握手。作为程序员的你,是不是常常听到这个词,却又对它的具体过程和原理有些模糊呢?别担心,今天我们就来深入浅出地聊聊这个话题,让你彻底搞清楚TCP三次握手的奥秘!

什么是TCP三次握手?

TCP三次握手是TCP协议建立连接的过程。简单来说,它是客户端和服务端在正式传输数据之前,进行的一种“握手”操作,通过这种操作,双方能够确认彼此的存在,并同步彼此的状态。具体来说,TCP三次握手分为以下三个步骤:

1. 第一次握手:客户端发送SYN包

首先,客户端向服务端发送一个带有SYN(Synchronize)标志的数据包,这个包用来表示客户端希望建立连接,并且在包中包含了一个初始序列号(Sequence Number)。发送这个包之后,客户端进入SYN_SENT状态,等待服务端的响应。

2. 第二次握手:服务端发送SYN/ACK包

当服务端收到客户端的SYN包后,会发送一个带有SYN和ACK(Acknowledgment)标志的数据包作为响应,这个包中包含了服务端自己的初始序列号,同时对客户端的序列号进行确认(ACK)。发送这个包后,服务端进入SYN_RCVD状态,等待客户端的确认。

3. 第三次握手:客户端发送ACK包

最后,客户端收到服务端的SYN/ACK包后,会发送一个带有ACK标志的数据包,表示确认收到了服务端的SYN包,同时也带上了自己对服务端序列号的确认。发送这个包后,客户端进入ESTABLISHED状态,服务端收到这个ACK包后,也进入ESTABLISHED状态,此时,连接正式建立,双方可以开始数据传输了。

为什么需要三次握手?

可能有的小伙伴会问了,为什么要这么复杂,要三次握手呢?两次握手不行吗?这里,小米就来详细解释一下。

  • 建立可靠的通信信道:首先,TCP协议是一种面向连接的、可靠的传输协议。在通信过程中,为了保证数据的完整性和可靠性,TCP需要确保客户端和服务端双方都具备发送和接收数据的能力。三次握手正是为了达到这个目的。
  • 防止已失效的请求报文:假设只进行两次握手,那么会存在一种情况:假如客户端发出的第一个SYN包由于网络问题延迟到达,当这个包到达服务端时,客户端可能已经不再需要建立连接了。如果此时服务端收到这个SYN包,并且返回一个ACK包,连接就会建立起来,但实际上客户端并不需要这个连接,从而浪费了资源。而三次握手可以有效避免这种情况。
  • 确认双方序列号:在TCP通信中,序列号是非常重要的。它用于标识数据包,并且在数据传输过程中起到跟踪和确认的作用。通过三次握手,客户端和服务端可以相互告知各自的初始序列号,并确认对方已经收到了这个序列号,从而确保双方的通信是可靠和同步的。

为什么两次握手不行?

两次握手的问题主要体现在以下几个方面:

  • 防止已失效的请求报文:如上所述,两次握手无法有效防止已失效的请求报文导致的资源浪费问题。而三次握手通过客户端的最后一个ACK包来确认服务端的SYN/ACK包,从而避免了这种情况的发生。
  • 确保双向通信的可靠性:两次握手只能保证单向通信的可靠性。TCP通信要求双方都能确认对方的初始序列号,从而实现可靠的数据传输。如果只进行两次握手,只有连接发起方的初始序列号能被确认,而对方的序列号无法确认,这样就无法保证双向通信的可靠性。
  • 确保连接的同步:三次握手的过程确保了连接的同步。客户端和服务端通过三次握手可以确认彼此的存在,并且同步各自的状态和序列号,从而为后续的数据传输打下坚实的基础。

TCP三次握手的过程详解

第一次握手:SYN包的发送和接收

当客户端希望与服务端建立连接时,会发送一个SYN包,这个包中包含了客户端的初始序列号。这个序列号用于标识客户端即将发送的数据包,并且在后续的通信中起到跟踪和确认的作用。发送SYN包后,客户端进入SYN_SENT状态,等待服务端的响应。

服务端收到SYN包后,会分配资源来处理这个连接请求,并生成一个自己的初始序列号。然后,服务端会发送一个SYN/ACK包给客户端,这个包中包含了服务端的初始序列号,以及对客户端序列号的确认。发送SYN/ACK包后,服务端进入SYN_RCVD状态,等待客户端的确认。

第二次握手:SYN/ACK包的发送和接收

客户端收到服务端的SYN/ACK包后,会检查其中的确认信息,以确保服务端正确接收了自己的序列号。同时,客户端也会生成一个ACK包来确认服务端的序列号。这个ACK包表示客户端已经收到了服务端的SYN/ACK包,并且确认了其中的序列号。发送ACK包后,客户端进入ESTABLISHED状态,等待服务端的确认。

服务端收到ACK包后,会检查其中的确认信息,以确保客户端正确接收了自己的序列号。此时,服务端进入ESTABLISHED状态,表示连接已经建立,双方可以开始数据传输了。

第三次握手:ACK包的发送和接收

在第三次握手中,客户端发送的ACK包包含了对服务端序列号的确认。这个包表示客户端已经收到了服务端的SYN/ACK包,并且确认了其中的序列号。发送ACK包后,客户端进入ESTABLISHED状态,表示连接已经建立。

服务端收到ACK包后,会检查其中的确认信息,以确保客户端正确接收了自己的序列号。此时,服务端也进入ESTABLISHED状态,表示连接已经建立,双方可以开始数据传输了。

END

通过三次握手,TCP协议确保了客户端和服务端双方都具备发送和接收数据的能力,从而建立了可靠的通信信道。这种设计不仅避免了已失效的请求报文导致的资源浪费问题,还确保了双向通信的可靠性和连接的同步。

希望通过这篇文章,大家能够对TCP三次握手有一个更清晰的了解。如果你有任何疑问或想了解更多相关知识,欢迎在评论区留言,我们一起讨论交流!下次见啦,小伙伴们!

以上就是小米今天为大家带来的TCP三次握手的详细讲解。希望这篇文章对你有所帮助,如果你觉得有用,请点个赞或者转发给更多的朋友哦!让我们一起进步,成为更优秀的程序员!

我是小米,一个喜欢分享技术的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
5月前
|
C#
【PDF提取内容改名】批量提取PDF指定区域内容重命名PDF文件,PDF自动提取内容命名的方案和详细步骤
本工具可批量提取PDF中的合同编号、日期、发票号等关键信息,支持PDF自定义区域提取并自动重命名文件,适用于合同管理、发票处理、文档归档和数据录入场景。基于iTextSharp库实现,提供完整代码示例与百度、腾讯网盘下载链接,助力高效处理PDF文档。
713 40
|
存储 开发者
HashMap和Hashtable的key和value可以为null吗,ConcurrentHashMap呢
HashMap的key可以为null,value也可以为null;Hashtable的key不允许为null,value也不能为null;ConcurrentHashMap的key不允许为null
|
算法 数据挖掘 数据库
【数据挖掘】频繁项集挖掘方法中Apriori、FP-Growth算法详解(图文解释 超详细)
【数据挖掘】频繁项集挖掘方法中Apriori、FP-Growth算法详解(图文解释 超详细)
2378 0
|
前端开发 虚拟化 内存技术
SPDK vhost target
SPDK vhost target
|
网络协议 Python
面试题:三次握手,为什么要三次而不是两次四次?
字节跳动面试题:三次握手,为什么要三次而不是两次四次?
443 0
|
存储 移动开发 搜索推荐
利用C语言实现十大经典排序算法的方法
利用C语言实现十大经典排序算法的方法
452 1
|
数据采集 开发者 Python
Python正则表达式之re.compile函数
`re.compile`是Python正则表达式处理中一个强大的工具,它通过预先编译正则表达式,不仅提升了执行效率,还增强了代码的组织性和可读性。掌握其使用,对于涉及文本分析、数据清洗、日志处理等领域的Python开发者来说,是非常必要的技能。正确并高效地应用这一功能,可以显著提升程序的性能和维护性。
996 0
crash工具学习 —— percpu相关的一些用法
crash工具学习 —— percpu相关的一些用法
|
网络协议 网络性能优化
TCP 建立连接为啥需要经过三次握手
TCP 建立连接为啥需要经过三次握手
180 0
|
资源调度 Serverless 计算机视觉
高斯函数 Gaussian Function
**高斯函数,或称正态分布,以数学家高斯命名,具有钟形曲线特征。关键参数包括期望值μ(决定分布中心)和标准差σ(影响分布的宽度)。当μ=0且σ²=1时,分布为标准正态分布。高斯函数广泛应用于统计学、信号处理和图像处理,如高斯滤波器用于图像模糊。其概率密度函数为e^(-x²/2σ²),积分结果为误差函数。在编程中,高斯函数常用于创建二维权重矩阵进行图像的加权平均,实现模糊效果。
2255 1