AI大模型企业应用实战(24)-什么是zero-shot, one-shot和few-shot Learning?

简介: 零样本学习(Zero-Shot Learning)是机器学习中的一种方法,模型在未见过的类别上进行分类,依赖于类别描述来建立训练与测试集间的联系。例如,通过已知的马、老虎和熊猫特征推断斑马。单样本学习(One-Shot Learning)则是在极少量样本(如一个)的情况下进行学习,目标是减少训练数据需求,适用于新类别出现时无需重新训练的情况。小样本学习(Few-Shot Learning)是处理仅有少量类内样本的学习任务。这三者常用于图像分类、语义分割等场景,One-Shot是Few-Shot的特殊情况。

1 Zero-shot learning

零样本学习。

1.1 任务定义

利用训练集数据训练模型,使得模型能够对测试集的对象进行分类,但是训练集类别和测试集类别之间没有交集;期间需要借助类别的描述,来建立训练集和测试集之间的联系,从而使得模型有效。

Zero-shot learning 就是希望我们的模型能够对其从没见过的类别进行分类,让机器具有推理能力,实现真正的智能。其中零次(Zero-shot)是指对于要分类的类别对象,一次也不学习。

1.2 实例

假设我们的模型已经能够识别马、老虎和熊猫了,现在需要该模型也识别斑马,那么我们需要告诉模型,怎样的对象才是斑马,但是并不能直接让模型看见斑马。所以模型需要知道的信息是马的样本、老虎的样本、熊猫的样本和样本的标签,以及关于前三种动物和斑马的描述。

通俗点说就是:假设小暗(纯粹因为不想用小明)和爸爸,到了动物园,看到了马,然后爸爸告诉他,这就是马;之后,又看到了老虎,告诉他:“看,这种身上有条纹的动物就是老虎。”;最后,又带他去看了熊猫,对他说:“你看这熊猫是黑白色的。”然后,爸爸给小暗安排了一个任务,让他在动物园里找一种他从没见过的动物,叫斑马,并告诉了小暗有关于斑马的信息:“斑马有着马的轮廓,身上有像老虎一样的条纹,而且它像熊猫一样是黑白色的。”最后,小暗根据爸爸的提示,在动物园里找到了斑马(意料之中的结局。。。)。

上述例子中包含了一个人类的推理过程,就是利用过去的知识(马、老虎、熊猫和斑马的描述),在脑海中推理出新对象的具体形态,从而能对新对象进行辨认。Zero-shot learning就是希望能够模仿人类的这个推理过程,使得计算机具有识别新事物的能力。

2 One-shot learning

单样本学习

Zero-shot learning 指的是我们之前没有这个类别的训练样本。但是我们可以学习到一个映射X->Y。如果这个映射足够好的话,我们就可以处理没有看到的类了。

One-shot learning 指的是我们在训练样本很少,甚至只有一个的情况下,依旧能做预测。这是如何做到呢?可以在一个大数据集上学到general knowledge(具体的说,也可以是X->Y的映射),然后再到小数据上有技巧的update。

2.1 One-Shot Learning的意义

① 减少训练数据

深度学习需要大量的数据。如MNIST为了10个类别的区分,需要60000张训练图像,平均一个类别需要6000张训练图像。

One-Shot试图将一个类别的训练图像减少,极端情况时只有一张图片。

② 在新类别的数据出现时,无需重新训练

传统的神经网络无法处理没有出现在训练集中的类别。

如以员工刷脸打卡为例,使用深度神经网络,每一个新员工入职,都是一个类别,需要重新训练深度神经网络。如果每天都有新员工入职,每天都要重新训练网络,成本非常高。

One-Shot Learning可以无需重新训练即可应用于新的类别的数据。

One-shot learning 属于Few-shot learning的一种特殊情况。

3 Few-shot learning

小样本学习

如果训练集中,不同类别的样本只有少量,则称为Few-shot learning.

就是给模型待预测类别的少量样本,然后让模型通过查看该类别的其他样本来预测该类别。比如:给小孩子看一张熊猫的照片,那么小孩子到动物园看见熊猫的照片之后,就可以识别出那是熊猫。

Few-shot Learning V.S Zero-shot Learning

  • 小样本学习的目的是在有少量训练数据的情况下能获得准确分类测试样本的模型
  • 零样本学习的目的是预测训练数据集中没有出现过的类

零样本学习和小样本学习有很多共同的应用,如:

  • 图像分类 (image classification)
  • 语义分割 (semantic segmentation)
  • 图像生成 (image generation)
  • 目标检测 (object detection)
  • 自然语言处理 (natural language processing)

另外单样本学习 (one-shot learning) 经常会和零样本学习混在一起。单样本学习是小样本学习问题的一个特例,它的目的是从一个训练样本或图片中学习到有关物体类别的信息。单样本学习的一个例子是,智能手机中使用的人脸识别技术。

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化
  • 活动&券等营销中台建设
  • 交易平台及数据中台等架构和开发设计
  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化
  • LLM应用开发

目前主攻降低软件复杂性设计、构建高可用系统方向。

相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
4天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
34 3
|
7天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
38 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
3天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
4天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
26 1
|
10天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
100 48
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
28 10
|
6天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。