拆解LangChain的大模型记忆方案

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 之前我们聊过如何使用LangChain给LLM(大模型)装上记忆,里面提到对话链ConversationChain和MessagesPlaceholder,可以简化安装记忆的流程。下文来拆解基于LangChain的大模型记忆方案。

之前我们聊过如何使用LangChain给LLM(大模型)装上记忆,里面提到对话链ConversationChainMessagesPlaceholder,可以简化安装记忆的流程。下文来拆解基于LangChain的大模型记忆方案。

1. 安装记忆的原理

1.1. 核心步骤

给LLM安装记忆的核心步骤就3个:

  1. 在对话之前调取之前的历史消息。
  2. 将历史消息填充到Prompt里。
  3. 对话结束后,继续将历史消息保存到到memory记忆中。

1.2. 常规使用方法的弊端

了解这3个核心步骤后,在开发过程中,就需要手动写代码实现这3步,这也比较麻烦,不仅代码冗余,而且容易遗漏这些模板代码。

为了让开发者聚焦于业务实现,LangChain贴心地封装了这一整套实现。使用方式如下。

2. 记忆的种类

记忆分为 短时记忆 和 长时记忆。

在LangChain中使用ConversationBufferMemory作为短时记忆的组件,实际上就是以键值对的方式将消息存在内存中。

如果碰到较长的对话,一般使用ConversationSummaryMemory对上下文进行总结,再交给大模型。或者使用ConversationTokenBufferMemory基于固定的token数量进行内存刷新。

如果想对记忆进行长时间的存储,则可以使用向量数据库进行存储(比如FAISS、Chroma等),或者存储到Redis、Elasticsearch中。

下面以ConversationBufferMemory为例,对如何快速安装记忆做个实践。

3. 给LLM安装记忆 — 非MessagesPlaceholder

3.1. ConversationBufferMemory使用示例

使用ConversationBufferMemory进行记住上下文:

memory = ConversationBufferMemory()
memory.save_context(
    {"input": "你好,我的名字是半支烟,我是一个程序员"}, {"output": "你好,半支烟"}
)
memory.load_memory_variables({})
AI 代码解读

3.2. LLMChain+ConversationBufferMemory使用示例

# prompt模板
template = """
你是一个对话机器人,以下<history>标签中是AI与人类的历史对话记录,请你参考历史上下文,回答用户输入的问题。

历史对话:
<history>
{customize_chat_history}
</history>

人类:{human_input}
机器人:

"""

prompt = PromptTemplate(
    template=template,
    input_variables=["customize_chat_history", "human_input"],
)
memory = ConversationBufferMemory(
    memory_key="customize_chat_history",
)
model = ChatOpenAI(
    model="gpt-3.5-turbo",
)

chain = LLMChain(
    llm=model,
    memory=memory,
    prompt=prompt,
    verbose=True,
)

chain.predict(human_input="你知道我的名字吗?")

# chain.predict(human_input="我叫半支烟,我是一名程序员")

# chain.predict(human_input="你知道我的名字吗?")
AI 代码解读

此时,已经给LLM安装上记忆了,免去了我们写那3步核心的模板代码。

对于PromptTemplate使用以上方式,但ChatPromptTemplate因为有多角色,所以需要使用MessagesPlaceholder。具体使用方式如下。

4. 给LLM安装记忆 — MessagesPlaceholder

MessagesPlaceholder主要就是用于ChatPromptTemplate场景。ChatPromptTemplate模式下,需要有固定的格式。

4.1. PromptTemplate和ChatPromptTemplate区别

ChatPromptTemplate主要用于聊天场景。ChatPromptTemplate有多角色,第一个是System角色,后续的是Human与AI角色。因为需要有记忆,所以之前的历史消息要放在最新问题的上方。

4.2. 使用MessagesPlaceholder安装

最终的ChatPromptTemplate + MessagesPlaceholder代码如下:

chat_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "你是一个乐于助人的助手。"),
        MessagesPlaceholder(variable_name="customize_chat_history"),
        ("human", "{human_input}"),
    ]
)

memory = ConversationBufferMemory(
    memory_key="customize_chat_history",
    return_messages=True,
)
model = ChatOpenAI(
    model="gpt-3.5-turbo",
)

chain = LLMChain(
    llm=model,
    memory=memory,
    prompt=chat_prompt,
    verbose=True,
)

chain.predict(human_input="你好,我叫半支烟,我是一名程序员。")
AI 代码解读

至此,我们使用了ChatPromptTemplate简化了构建prompt的过程。

5. 使用对话链ConversationChain

如果连ChatPromptTemplate都懒得写了,那直接使用对话链ConversationChain,让一切变得更简单。实践代码如下:

memory = ConversationBufferMemory(
    memory_key="history",  # 此处的占位符必须是history
    return_messages=True,
)
model = ChatOpenAI(
    model="gpt-3.5-turbo",
)

chain = ConversationChain(
    llm=model,
    memory=memory,
    verbose=True,
)

chain.predict(input="你好,我叫半支烟,我是一名程序员。")  # 此处的变量必须是input
AI 代码解读

ConversationChain提供了包含AI角色和人类角色的对话摘要格式。ConversationChain实际上是对Memory和LLMChain和ChatPrompt进行了封装,简化了初始化Memory和构建ChatPromptTemplate的步骤。

6. ConversationBufferMemory

6.1. memory_key

ConversationBufferMemory有一个入参是memory_key,表示内存中存储的本轮对话的,后续可以根据找到对应的值。

6.2. 使用"chat_history"还是"history"

ConversationBufferMemorymemory_key,有些资料里是设置是memory_key="history",有些资料里是"chat_history"

这里有2个规则,如下:

  • 在使用MessagesPlaceholderConversationBufferMemory时,MessagesPlaceholdervariable_nameConversationBufferMemorymemory_key可以自定义,只要相同就可以。比如这样:
chat_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "你是一个乐于助人的助手。"),
        MessagesPlaceholder(variable_name="customize_chat_history"),
        ("human", "{input}"),
    ]
)

memory = ConversationBufferMemory(
    memory_key="customize_chat_history",  # 此处的占位符可以是自定义
    return_messages=True,
)
model = ChatOpenAI(
    model="gpt-3.5-turbo",
)

chain = ConversationChain(
    llm=model,
    memory=memory,
    prompt=chat_prompt,
    verbose=True,
)

chain.predict(input="你好,我叫半支烟,我是一名程序员。")  # 此处的变量必须是input
AI 代码解读
  • 如果只是使用ConversationChain又没有使用MessagesPlaceholder的场景下,ConversationBufferMemory的memory_key,必须用history

7. MessagesPlaceholder的使用场景

MessagesPlaceholder其实就是在与AI对话过程中的Prompt的一部分,它代表Prompt中的历史消息这部分。它提供了一种结构化和可配置的方式来处理这些消息列表,使得在构建复杂Prompt时更加灵活和高效。

说白了它就是个占位符,相当于把从memory读取的历史消息插入到这个占位符里了。

比如这样,就可以表示之前的历史对话消息:

chat_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "你是一个乐于助人的助手。"),
        MessagesPlaceholder(variable_name="customize_chat_history"),
        ("human", "{human_input}"),
    ]
)
AI 代码解读

是否需要使用MessagesPlaceholder,记住2个原则:

  • PromptTemplate类型的模板,无需使用MessagesPlaceholder
  • ChatPromptTemplate 类型的聊天模板,需要使用MessagesPlaceholder。但是在使用ConversationChain时,可以省去创建ChatPromptTemplate的过程(也可以不省去)。省去和不省去在输出过程中有些区别,如下:

8. 总结

本文主要聊了安装记忆的基本原理、快速给LLM安装记忆、ConversationBufferMemoryMessagesPlaceholder的使用、对话链ConversationChain的使用和原理。希望对你有帮助!

=====>>>>>> 关于我 <<<<<<=====

本篇完结!欢迎点赞 关注 收藏!!!

原文链接:https://mp.weixin.qq.com/s/cRavfyu--AjBOO3-1aY0UA

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
打赏
0
2
2
1
140
分享
相关文章
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
1333 2
|
5月前
LangChain-11 Code Writing FunctionCalling 大模型通过编写代码完成需求 大模型计算加法
LangChain-11 Code Writing FunctionCalling 大模型通过编写代码完成需求 大模型计算加法
54 4
|
5月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
185 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!
【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。
336 14
前端大模型入门(二):掌握langchain的核心Runnable接口
Langchain.js 是 Langchain 框架的 JavaScript 版本,专为前端和后端 JavaScript 环境设计。最新 v0.3 版本引入了强大的 Runnable 接口,支持灵活的执行方式和异步操作,方便与不同模型和逻辑集成。本文将详细介绍 Runnable 接口,并通过实现自定义 Runnable 来帮助前端人员快速上手。
164 1
揭秘LangChain+RAG如何重塑行业未来?保姆级实战演练,解锁大模型在各领域应用场景的神秘面纱!
【10月更文挑战第4天】随着AI技术的发展,大型语言模型在各行各业的应用愈发广泛,检索增强生成(RAG)技术成为推动企业智能化转型的关键。本文通过实战演练,展示了如何在LangChain框架内实施RAG技术,涵盖金融(智能风控与投资决策)、医疗(辅助诊断与病历分析)及教育(个性化学习推荐与智能答疑)三大领域。通过具体示例和部署方案,如整合金融数据、医疗信息以及学生学习资料,并利用RAG技术生成精准报告、诊断建议及个性化学习计划,为企业提供了切实可行的智能化解决方案。
187 5
LangChain-17 FunctionCalling 利用大模型对函数进行回调 扩展大模型的额外的能力 比如实现加减乘除等功能
LangChain-17 FunctionCalling 利用大模型对函数进行回调 扩展大模型的额外的能力 比如实现加减乘除等功能
111 4
|
5月前
|
LangChain-25 ReAct 让大模型自己思考和决策下一步 AutoGPT实现途径、AGI重要里程碑
LangChain-25 ReAct 让大模型自己思考和决策下一步 AutoGPT实现途径、AGI重要里程碑
191 0
LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
LangChain-22 Text Embedding 续接21节 文本切分后 对文本进行embedding向量化处理 后续可保存到向量数据库后进行检索 从而扩展大模型的能力
114 0
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了一种结合知识图谱与大型语言模型(LLM)的GraphRAG系统,利用PolarDB、通义千问及LangChain实现。知识图谱通过结构化信息、语义理解和推理等功能,增强了信息检索与自然语言处理效果。PolarDB具备图引擎与向量检索能力,适配知识图谱存储与查询。通义千问处理自然语言,LangChain则整合模型与应用。实战步骤包括环境准备、数据库配置与数据导入,并通过实例展示了图谱与向量联合检索的优越性,提升了问答系统的准确性和实用性。

热门文章

最新文章