「AIGC」AIGC技术入门

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: **摘要:**探索AI概念与实践,涵盖AI、AIGC(人工智能生成内容)、AGI(人工通用智能)、模型大小、提示词工程、神经网络等。深度学习框架如TensorFlow支持模型构建,Transformer模型利用自注意力机制处理序列数据。大模型如LLMs擅长复杂任务,能适应企业定制需求,例如知识库问答。小模型则在资源有限时发挥作用。召回率衡量搜索效果,Tokenization将文本转化为模型输入。实际应用中,AI用于天气预报、内容生成,Transformer助力翻译,定制模型解决企业内部问题,如客户服务和知识库查询。

人工智能(AI)领域的多个重要概念和实践。

一、思考问题

  • 什么是AI?
  • 什么是AIGC?
  • 什么是AGI?
  • 什么是模型?
  • 什么是大模型(LLM),什么是小模型?
  • 什么是提示词工程?如何写提示词
  • 什么是神经网络?
  • 召回率是什么含义?
  • 常见深度学习的框架及工具有哪些?
  • 什么是transformer?
  • 自注意力机制是什么?
  • token是什么,tokeen如何转换为模型的输入(分
    词编码)?
  • 各个模型上下文限制是多少?
  • 大模型有哪些能力可以满足企业内部定制化的需求?
  • 如何大模型完成企业内知识库知识的问答?(提示词:R/AG)
  • 大模型是如何实现FunctionCall函数调用的?

二、探索

  • AI(人工智能):AI是指使计算机系统模拟人类智能的技术,包括学习、推理、自我修正、感知、理解语言等能力。

  • AIGC(人工智能生成内容):AIGC指的是利用人工智能技术自动或半自动地生成内容的过程,如文本、图像、音乐等。

  • AGI(人工通用智能):AGI是指具有广泛智能的人工智能系统,能够执行任何智能生物能够执行的智能任务。

  • 模型:在AI中,模型通常是指通过学习数据集而形成的算法或数学结构,它能够对数据进行预测或分类。

  • 大模型(Large Language Models, LLMs):指的是具有大量参数(通常数十亿到数百亿)的语言模型,能够处理复杂的语言任务。

  • 小模型:相对于大模型,小模型拥有较少的参数,适用于资源受限的环境或特定的、不那么复杂的任务。

  • 提示词工程:指的是在与AI系统交互时,精心设计输入语句以引导模型产生期望输出的过程。写提示词需要考虑清晰性、具体性和引导性。

  • 神经网络:一种模仿人脑神经元网络结构的计算模型,用于处理和解决各种复杂问题。

  • 召回率:在信息检索中,召回率是指检索出的相关文档数与所有相关文档总数的比例,是衡量搜索系统性能的一个指标。

  • 常见深度学习框架及工具:包括TensorFlow、PyTorch、Keras、PaddlePaddle等。

  • Transformer:一种基于自注意力机制的深度学习模型,广泛应用于自然语言处理任务。

  • 自注意力机制:允许模型在处理序列时同时考虑序列中的所有位置,而不是仅考虑相邻元素。

  • Token:在自然语言处理中,Token是文本的基本单位,如单词或字符。

  • Tokenization:是将文本转换为模型可以理解的数值形式的过程,通常涉及将文本分割成Token,然后转换为数值ID。

  • 模型上下文限制:指的是模型在处理输入时能够考虑的Token数量限制,这通常受模型架构和内存限制。

  • 大模型满足企业内部定制化需求的能力:包括自然语言理解、文本生成、个性化推荐、自动化客户服务等。

  • 大模型完成企业内知识库问答:通过训练模型以包含企业知识库的数据,使其能够准确回答与企业知识相关的问题。

  • FunctionCall函数调用:在一些高级的AI模型中,可以编程实现特定的函数调用,以执行特定的任务或操作。

三、实践

AI(人工智能):
案例:一个智能助手可以根据你的问题提供答案。比如,你问“明天的天气如何?”AI会分析当前的天气数据并预测明天的天气。

AIGC(人工智能生成内容):
案例:使用AI生成一篇文章。给定一个主题,AI可以自动撰写一篇文章,包括引言、主体和结论。

AGI(人工通用智能):
案例:一个能够像人类一样在多种环境中灵活应用知识和技能的机器人,比如可以绘画、下棋、解决问题等。

模型:
案例:一个垃圾邮件过滤器就是一个模型,它通过学习区分垃圾邮件和非垃圾邮件的特征来工作。

大模型(LLMs):
案例:一个能够理解并生成多种语言的翻译模型,它拥有数十亿参数,能够处理复杂的语言转换任务。

小模型:
案例:一个简单的手写数字识别模型,它可能只有几千个参数,但足以完成基本的图像分类任务。

提示词工程:
案例:当你向AI提问时,使用“定义”作为提示词,AI会提供相关术语的定义,如“请定义‘人工智能’”。

神经网络:
案例:一个识别图像中的猫和狗的神经网络,它通过学习图像中的特征来区分猫和狗。

召回率
案例:在一个搜索引擎中,如果召回率是90%,意味着对于所有相关的搜索结果,搜索引擎能够找到其中的90%。

深度学习框架及工具:
案例:使用TensorFlow框架训练一个识别手写数字的模型,通过编写代码来构建、训练和测试神经网络。

Transformer:
案例:使用Transformer模型来翻译文本,比如将英文句子“Hello, how are you?”翻译成中文。

自注意力机制:
案例:在处理一个句子时,自注意力机制允许模型同时关注句子中的每个单词,以更好地理解整个句子的含义。

Token:
案例:将句子“Hello, how are you?”转换为Token可能得到["Hello", ",", "how", "are", "you", "?"]。

Tokenization:
案例:将上述Token转换为数值ID,以便模型能够处理。比如,"Hello"可能被转换为数字1,","为2,依此类推。

模型上下文限制:
案例:一个模型可能只能处理最多512个Token的输入,这意味着它在处理长文本时可能会截断信息。

大模型满足企业内部定制化需求:
案例:一个企业使用定制化的AI模型来自动生成客户服务报告,这个模型能够理解企业特定的术语和格式。

大模型完成企业内知识库问答:
案例:企业内部有一个关于产品支持的知识库,AI模型被训练来理解这个知识库,并能够回答员工关于产品的问题。

FunctionCall函数调用:
案例:在AI模型中,可以定义一个函数,当用户问到特定问题时,模型会调用这个函数来提供答案。比如,当用户询问股票价格时,模型会调用一个实时股票信息API来获取数据。

通过这些案例,我们可以看到AI技术是如何在不同的场景中被应用的,以及它们是如何通过不同的技术和方法来实现特定的功能和目的的。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术发展与应用实践(一文读懂AIGC)
AIGC(人工智能生成内容)是利用AI技术生成文本、图像、音频、视频等内容的重要领域。其发展历程包括初期探索、应用拓展和深度融合三大阶段,核心技术涵盖数据收集、模型训练、内容生成、质量评估及应用部署。AIGC在内容创作、教育、医疗、游戏、商业等领域广泛应用,未来将向更大规模、多模态融合和个性化方向发展。但同时也面临伦理法律和技术瓶颈等挑战,需在推动技术进步的同时加强规范与监管,以实现健康可持续发展。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
技术创新领域,AI(AIGC)是否会让TRIZ“下岗”?
法思诺创新直播间探讨了AI(AIGC)是否将取代TRIZ的问题。专家赵敏认为,AI与TRIZ在技术创新领域具有互补性,结合两者更务实。TRIZ提供结构化分析框架,AI加速数据处理和方案生成。DeepSeek、Gemini等AI也指出,二者各有优劣,应在复杂创新中协同使用。企业应建立双轨知识库,重构人机混合创新流程,实现全面升级。结论显示,AI与TRIZ互补远超竞争,结合二者是未来技术创新的关键。
274 0
|
9月前
|
机器学习/深度学习 自然语言处理 TensorFlow
解锁 AIGC 工具:入门者到高级达人的终极蜕变手册
解锁 AIGC 工具:入门者到高级达人的终极蜕变手册
|
10月前
|
人工智能 搜索推荐 数据库
实时云渲染技术赋能AIGC,开启3D内容生态黄金时代
在AIGC技术革命的推动下,3D内容生态将迎来巨大变革。实时云渲染与Cloud XR技术将在三维数字资产的上云、交互及传播中扮演关键角色,大幅提升生产效率并降低门槛。作为云基础设施厂商,抓住这一机遇将加速元宇宙的构建与繁荣。AIGC不仅改变3D内容的生成方式,从手工转向自动生成,还将催生更多3D创作工具和基础设施,进一步丰富虚拟世界的构建。未来,通过文本输入即可生成引人注目的3D环境,多模态模型的应用将极大拓展创作的可能性。
|
人工智能 自然语言处理 数据可视化
什么是AIGC?如何使用AIGC技术辅助办公?
2分钟了解AIGC技术及其如何提高日常办公效率!
3762 4
什么是AIGC?如何使用AIGC技术辅助办公?
|
10月前
|
编解码 人工智能 算法
国家扶持超高清产业背景下:视频云AIGC的超高清技术实践
本次分享由阿里云视频云高级产品解决方案架构师陈震主讲,聚焦国家扶持超高清产业背景下,视频云AIGC的超高清技术实践。内容涵盖超高清产业发展趋势与挑战、阿里视频云的应对方案及应用案例。通过全链路超高清解决方案,结合AI、云计算等技术,提供从内容生产、传输到播放的完整支持,助力行业应对超高清视频带来的技术与市场挑战。
403 0
|
10月前
|
人工智能 编解码 安全
全球AI新浪潮:智能媒体服务的技术创新与AIGC加速出海
本文介绍了智能媒体服务的国际化产品技术创新及AIGC驱动的内容出海技术实践。首先,探讨了媒体服务在视频应用中的升级引擎作用,分析了国际市场的差异与挑战,并提出模块化产品方案以满足不同需求。其次,重点介绍了AIGC技术如何推动媒体服务2.0智能化进化,涵盖多模态内容理解、智能生产制作、音视频处理等方面。最后,发布了阿里云智能媒体服务的国际产品矩阵,包括媒体打包、转码、实时处理和传输服务,支持多种广告规格和效果追踪分析,助力全球企业进行视频化创新。
369 0
|
人工智能 自然语言处理 数据挖掘
Claude 3.5:一场AI技术的惊艳飞跃 | AIGC
在这个科技日新月异的时代,人工智能(AI)的进步令人惊叹。博主体验了Claude 3.5 Sonnet的最新功能,对其卓越的性能、强大的内容创作与理解能力、创新的Artifacts功能、视觉理解与文本转录能力、革命性的“computeruse”功能、广泛的应用场景与兼容性以及成本效益和易用性深感震撼。这篇介绍将带你一窥其技术前沿的魅力。【10月更文挑战第12天】
516 1
|
机器学习/深度学习 人工智能 自然语言处理
探索AIGC的底层技术:人工智能通用计算架构
探索AIGC的底层技术:人工智能通用计算架构
825 3