​「Python大数据」VOC数据统计聚类

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 使用Python脚本`learning.py`对VOC数据进行分词处理和聚类分析,借助jieba库去除停用词并统计词频。前处理后,筛选出频率最高的2000个名词存入`名词top2000.txt`。关键步骤包括加载自定义词典`luyouqi.txt`和停用词列表`stopwordsfull`。

前言

本文主要介绍通过python实现数据聚类、脚本开发、办公自动化。读取voc数据,聚类voc数据。

一、业务逻辑

  • 读取voc数据采集的数据
  • 批处理,使用jieba进行分词,去除停用词,词频统计聚类
  • 保存聚类后的数据写入到.txt文件中

    二、具体产出

    在这里插入图片描述

三、执行脚本

python learning.py

四、脚本

# VOC数据聚类
import pandas as pd
import jieba
import jieba.posseg as pseg
from collections import Counter

fileName = "100034532823" # sku

# 加载数据
df = pd.read_excel('clean/cleaned_voc'+fileName+'.xlsx')

# 创建一个 Counter 对象来存储词频统计结果
counter = Counter()

# 加载停用词
with open('stopwordsfull', 'r', encoding='utf-8',errors='replace') as f:
    stopwords = [line.strip() for line in f.readlines()]
    # print(stopwords)

# 加载自定义词典
jieba.load_userdict("luyouqi.txt")  # luyouqi.txt is your custom dictionary



# 遍历每行评论
for line in df['cleaned_comments']:
    # 将预处理和分词后的评论按空格拆分
    words = str(line).split()

    # 对每个词进行词性标注
    for word in words:
        # jieba 的词性标注需要一个完整的句子作为输入,因此我们需要将词语拼接回句子
        sentence = ''.join(word)

        # 使用 jieba 进行词性标注
        words_and_tags = pseg.cut(sentence)

        # 遍历标注结果
        for word, tag in words_and_tags:
            # 过滤出名词
            if tag.startswith('n') and len(word) > 1 and word not in stopwords:
            #if len(word) > 1 and word not in stopwords:
                # 将名词添加到 counter 中
                counter[word] += 1

# 获取词频最高的300个词
top300 = counter.most_common(2000)
# 写入到txt文件中
with open('learning/'+fileName+'名词top2000.txt', 'w') as f:
    for word, freq in top300:
        f.write(f"{word}\t{freq}\n")

五、关键文件

luyouqi.text 分词字典(片段)

2.4G
2.5G口
软路由
2.5G
WiFi
WiFi5
WiFi6
WiFi4

stopwordsfull 停用词(片段)

客户
层面
菜鸟
滑丝
换货
三思
固记
厂商
吸引力
体会
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
95 4
|
16天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
53 2
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
3月前
|
机器学习/深度学习 数据可视化 大数据
驾驭股市大数据:Python实战指南
【10月更文挑战第1天】随着信息技术的发展,投资者现在能够访问到前所未有的海量金融数据。本文将指导您如何利用Python来抓取当前股市行情的大数据,并通过分析这些数据为自己提供决策支持。我们将介绍从数据获取到处理、分析以及可视化整个流程的技术方法。
152 2
|
4月前
|
存储 大数据 索引
解锁Python隐藏技能:构建高效后缀树Suffix Tree,处理大数据游刃有余!
通过构建高效的后缀树,Python程序在处理大规模字符串数据时能够游刃有余,显著提升性能和效率。无论是学术研究还是工业应用,Suffix Tree都是不可或缺的强大工具。
73 6
|
3月前
|
大数据 关系型数据库 数据库
python 批量处理大数据写入数据库
python 批量处理大数据写入数据库
164 0
|
3月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
436 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
59 2
|
2月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
100 1

相关产品

  • 云原生大数据计算服务 MaxCompute