深入理解Java中的网络编程模型

简介: 深入理解Java中的网络编程模型

深入理解Java中的网络编程模型

1. 理解网络编程基础

在Java中,网络编程是指利用Java语言进行网络通信的过程。它涉及到客户端与服务器之间的数据传输,常见的网络编程模型包括Socket编程和基于NIO的异步非阻塞IO编程。

2. 使用Socket编程实现TCP通信

Socket编程是Java传统的网络编程方式,它基于TCP协议实现可靠的网络通信。以下是一个简单的Socket客户端和服务器端的示例:

package cn.juwatech.network;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;

// 服务器端
public class SocketServer {
   

    public static void main(String[] args) throws IOException {
   
        ServerSocket serverSocket = new ServerSocket(8888);
        System.out.println("服务器端启动,等待客户端连接...");
        Socket clientSocket = serverSocket.accept(); // 等待客户端连接
        System.out.println("客户端已连接");

        BufferedReader in = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));
        PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);

        String line;
        while ((line = in.readLine()) != null) {
   
            System.out.println("收到客户端消息:" + line);
            out.println("服务器收到消息:" + line);
        }

        clientSocket.close();
        serverSocket.close();
    }
}

// 客户端
package cn.juwatech.network;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.Socket;

public class SocketClient {
   

    public static void main(String[] args) throws IOException {
   
        Socket socket = new Socket("localhost", 8888);
        PrintWriter out = new PrintWriter(socket.getOutputStream(), true);
        BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

        out.println("Hello, Server!");

        String response = in.readLine();
        System.out.println("服务器响应:" + response);

        socket.close();
    }
}
AI 代码解读

3. 使用NIO实现异步非阻塞IO通信

Java NIO(New IO)提供了更为灵活和高效的IO操作方式,适合处理高并发的网络通信场景。以下是一个基于NIO的简单示例:

package cn.juwatech.network;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;

public class NIOServer {
   

    public static void main(String[] args) throws IOException {
   
        Selector selector = Selector.open();
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.socket().bind(new InetSocketAddress(8888));
        serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
        serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT); // 注册接收事件

        System.out.println("服务器端启动,等待客户端连接...");

        while (true) {
   
            int readyChannels = selector.select(); // 阻塞直到有事件就绪
            if (readyChannels == 0) continue;

            Set<SelectionKey> selectedKeys = selector.selectedKeys();
            Iterator<SelectionKey> keyIterator = selectedKeys.iterator();

            while (keyIterator.hasNext()) {
   
                SelectionKey key = keyIterator.next();

                if (key.isAcceptable()) {
   
                    SocketChannel clientChannel = serverSocketChannel.accept();
                    clientChannel.configureBlocking(false);
                    clientChannel.register(selector, SelectionKey.OP_READ);
                    System.out.println("客户端已连接:" + clientChannel.getRemoteAddress());
                } else if (key.isReadable()) {
   
                    SocketChannel clientChannel = (SocketChannel) key.channel();
                    ByteBuffer buffer = ByteBuffer.allocate(1024);
                    int bytesRead = clientChannel.read(buffer);
                    if (bytesRead > 0) {
   
                        buffer.flip();
                        byte[] bytes = new byte[buffer.remaining()];
                        buffer.get(bytes);
                        String message = new String(bytes);
                        System.out.println("收到客户端消息:" + message);
                        clientChannel.write(ByteBuffer.wrap(("服务器收到消息:" + message).getBytes()));
                    } else if (bytesRead == -1) {
   
                        clientChannel.close();
                    }
                }

                keyIterator.remove();
            }
        }
    }
}

// 客户端略,可以使用SocketChannel连接
AI 代码解读

4. 总结

通过以上示例,我们深入理解了Java中的网络编程模型,包括传统的Socket编程和基于NIO的异步非阻塞IO编程。在实际应用中,根据具体场景选择合适的网络编程方式,并结合业务需求和系统性能来进行优化和调整,将有助于构建高效、可靠的网络通信系统。

相关文章
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
68 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
81 1
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
162 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
97 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
124 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
Java网络编程,多线程,IO流综合小项目一一ChatBoxes
**项目介绍**:本项目实现了一个基于TCP协议的C/S架构控制台聊天室,支持局域网内多客户端同时聊天。用户需注册并登录,用户名唯一,密码格式为字母开头加纯数字。登录后可实时聊天,服务端负责验证用户信息并转发消息。 **项目亮点**: - **C/S架构**:客户端与服务端通过TCP连接通信。 - **多线程**:采用多线程处理多个客户端的并发请求,确保实时交互。 - **IO流**:使用BufferedReader和BufferedWriter进行数据传输,确保高效稳定的通信。 - **线程安全**:通过同步代码块和锁机制保证共享数据的安全性。
93 23
|
2月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
85 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
Java网络编程封装
Java网络编程封装原理旨在隐藏底层通信细节,提供简洁、安全的高层接口。通过简化开发、提高安全性和增强可维护性,封装使开发者能更高效地进行网络应用开发。常见的封装层次包括套接字层(如Socket和ServerSocket类),以及更高层次的HTTP请求封装(如RestTemplate)。示例代码展示了如何使用RestTemplate简化HTTP请求的发送与处理,确保代码清晰易维护。
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
52 1
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
82 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等