【STM32开发入门】温湿度监测系统实战:SPI LCD显示、HAL库应用、GPIO配置、UART中断接收、ADC采集与串口通信全解析

简介: SPI(Serial Peripheral Interface)是一种同步串行通信接口,常用于微控制器与外围设备间的数据传输。SPI LCD是指使用SPI接口与微控制器通信的液晶显示屏。这类LCD通常具有较少的引脚(通常4个:MISO、MOSI、SCK和SS),因此在引脚资源有限的系统中非常有用。通过SPI协议,微控制器可以向LCD发送命令和数据,控制显示内容和模式。


目录

技术简单讲解:

SPI的LCD

HAL库

GPIO

UART的接收中断

ADC

串口通信

实现功能:


技术简单讲解:

SPI的LCD

SPI(Serial Peripheral Interface)是一种同步串行通信接口,常用于微控制器与外围设备间的数据传输。SPI LCD是指使用SPI接口与微控制器通信的液晶显示屏。这类LCD通常具有较少的引脚(通常4个:MISO、MOSI、SCK和SS),因此在引脚资源有限的系统中非常有用。通过SPI协议,微控制器可以向LCD发送命令和数据,控制显示内容和模式。

HAL库

HAL(Hardware Abstraction Layer)库是STMicroelectronics为STM32系列微控制器提供的一套软件抽象层,旨在简化硬件访问并提供跨不同STM32产品线的兼容性。它提供了一组高级API,使得开发者可以通过统一的接口访问底层硬件资源,如GPIO、USART、ADC等,而无需直接编写寄存器级的代码。使用HAL库可以加速开发过程,提高代码的可移植性和可维护性。

GPIO

GPIO(General-Purpose Input/Output)通用输入输出,是微控制器中的一种基本功能,允许软件控制引脚的高低电平,实现数字信号的输入或输出。GPIO可用于控制LED、读取按钮状态、与其他外设通信等。在嵌入式系统设计中,GPIO是实现硬件交互的重要手段。

UART的接收中断

UART(Universal Asynchronous Receiver/Transmitter)是一种常用的串行通信接口,支持异步数据传输。接收中断是UART通信中的一个重要特性,允许微控制器在接收到新的串行数据时暂停当前任务,立即处理接收到的数据,然后恢复原先的任务,这样可以提高系统的响应速度和效率。通过配置UART的接收中断,开发者可以编写中断服务例程(ISR)来处理接收到的数据,而无需持续轮询。

ADC

ADC(Analog-to-Digital Converter)模数转换器,是将模拟信号转换为数字信号的电子元件。在嵌入式系统中,ADC用于采集传感器(如温度、光线强度)的模拟信号,并将其转换为微控制器可以处理的数字值。ADC的精度、采样率和分辨率是衡量其性能的重要指标。

串口通信

串口通信是一种常用的设备间通信方式,允许数据在两台设备间以串行比特流的形式传输。常见的串口协议包括UART、RS232、RS485等。在嵌入式系统中,串口通信常用于设备调试、传感器数据传输、远程控制等场景。通过设定波特率、数据位、停止位和校验位,两台设备可以配置成兼容的通信参数,从而实现稳定的数据交换。

实现功能:

1.可以在LCD屏幕上显示温湿度、电压、还有加热片、冷凝片、风机的开关。

2.可以通过串口助手去控制加热片、冷凝片、风机的开关。

3.可以通过五向按键去控阈值,例如向上则令加热片的阈值加1,向下减1。

image.gif 编辑

运用的知识:

SPI的LCD、HAL库、GPIO、UART的接收中断、ADC、串口通信。

我是在这个的代码基础上去写的(网上买的温湿度传感器都会带)

实战配置:

首先是配置STM32CubeMX

根据个人的板子不同去创建新的工程 我这里是G030C8

image.gif 编辑

然后去看LED灯的电路图找到对应的串口

image.gif 编辑

image.gif 编辑

image.gif 编辑

其他两个等则是PB1和PB0

image.gif 编辑

选择打开

image.gif 编辑

image.gif 编辑

image.gif 编辑

打开LCD的灯

打开串口通信

image.gif 编辑

打开ADC通道

image.gif 编辑

设置ADC优先级

image.gif 编辑

接下来是代码实现

源码展示:

main.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "dht11.h"
#include <stdio.h>
#include "lcd.h"
#include <string.h>
static uint32_t fac_us = 0; //us延时倍乘数
void delay_init(uint8_t SYSCLK)
{
  fac_us = SYSCLK;
}
void delay_us(uint32_t nus)//100  6800
{
  uint32_t ticks;
  uint32_t told, tnow, tcnt = 0;
  uint32_t reload = SysTick->LOAD; //LOAD的值
  ticks = nus * fac_us;            //需要的节拍数
  told = SysTick->VAL;             // 24  刚进入时的计数器值
  while (1)
  {
    tnow = SysTick->VAL;//22  20  0
    if (tnow != told)
    {
      if (tnow < told)
        tcnt += told - tnow; //这里注意一下SYSTICK是一个递减的计数器就可以了.
      else
        tcnt += reload - tnow + told;
      told = tnow;
      if (tcnt >= ticks)
        break; //时间超过/等于要延迟的时间,则退出.
    }
  };
}
void delay_ms(uint16_t nms)
{
  uint32_t i;
  for (i = 0; i < nms; i++)
    delay_us(1000);
}
/* USER CODE END 4 */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
uint8_t humiH;
uint8_t humiL;
uint8_t tempH;
uint8_t tempL;
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
float vol = 0;// 电压
int d = 0;// 标志位
uint8_t buf4[32];//接收中断字符串
/* USER CODE END 0 */
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* USER CODE END 1 */
  /* MCU Configuration--------------------------------------------------------*/
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
  /* USER CODE BEGIN Init */
  /* USER CODE END Init */
  /* Configure the system clock */
  SystemClock_Config();
  /* USER CODE BEGIN SysInit */
  /* USER CODE END SysInit */
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  MX_ADC1_Init();
  /* USER CODE BEGIN 2 */
  delay_init(64);
  FS_DHT11_Init();
  float temp;
  int a = 28;//低温阈值
  int b = 35;//高温阈值
  int c = 35;//湿度阈值
  Lcd_Init();//初始LCD
  Lcd_Clear(BLACK);//增加底色
  uint8_t buf[32] = {0};// 接收ADC管道字符串
  char buf1[32];//温度字符串
  char buf2[32];//湿度字符串
  char buf3[32];//电压字符串
  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    HAL_UART_Receive_IT(&huart1,buf4,6);//中断接收函数,如果接收到四个或者四个以上的字符都会跳到rxcallback函数
    HAL_ADC_Start(&hadc1);//开始转换
    while(!(ADC1->ISR & 1<<2)){}
    buf[0]=HAL_ADC_GetValue(&hadc1);//电压值
    HAL_ADC_Stop(&hadc1);//停止转换
    vol = (float)buf[0];//赋值
    if(d == 0)//开始是自动的,如果一旦进入手动控制就不会再自动了一直在手动控制里
    {
    if(temp < a)//如果温度小于阈值
    {
      HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_RESET);//绿灯亮
      printf("加热片已开启\n");
      Gui_DrawFont_GBK16(0,100,NULL,WHITE,(uint8_t *)"Heating open");//LCD显示
    }
    else
    {
      HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_SET);//绿灯关
      Gui_DrawFont_GBK16(0,100,NULL,WHITE,(uint8_t *)"Heating close");
    }
    
    if(temp > b)
    {
      HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET);
      printf("冷凝片启动\n");
      Gui_DrawFont_GBK16(0,80,NULL,WHITE,(uint8_t *)"Condente open");
    }
    else
    {
      HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_SET);
      Gui_DrawFont_GBK16(0,80,NULL,WHITE,(uint8_t *)"Condente close");
    }
    
    if(humiH > c)
    {
      HAL_GPIO_WritePin(GPIOB,GPIO_PIN_2,GPIO_PIN_RESET);
      printf("风机启动\n");
      Gui_DrawFont_GBK16(0,60,NULL,WHITE,(uint8_t *)"Draught open");
    }
    else
    {
      HAL_GPIO_WritePin(GPIOB,GPIO_PIN_2,GPIO_PIN_SET);
      Gui_DrawFont_GBK16(0,60,NULL,WHITE,(uint8_t *)"Draught close");
    }
    
    /* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */
       DHT11_Read_Data(&humiH,&humiL,&tempH,&tempL);
       temp = tempH + tempL*0.1;
           //拼接字符串 将温湿度和电压都拼接到字符串里
       sprintf(buf1,"temp = %.2f",temp);
       sprintf(buf2,"humI= %d",humiH);
       sprintf(buf3,"vol = %.2f%%",(vol/4096)*100);
           //打在屏幕上
       Gui_DrawFont_GBK16(0,0,NULL,WHITE,(uint8_t *)buf1);
       Gui_DrawFont_GBK16(0,20,NULL,WHITE,(uint8_t *)buf2);
       Gui_DrawFont_GBK16(0,40,NULL,WHITE,(uint8_t *)buf3);
       HAL_Delay(1000);
       printf("temp = %.2fC  humi = %d%%  vol = %.2f",temp,humiH,vol);
  }
}
  /* USER CODE END 3 */
}
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 12;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV3;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_ADC;
  PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;
  PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_SYSCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}
/* USER CODE BEGIN 4 */
//输出函数
int fputc(int ch,FILE *p)
{
    while(!(USART1->ISR &(1<<7))){}
    USART1->TDR = ch;
    return ch;
}
//接收中断函数
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
  d++;//标志位
//比较接受来的字符串来执行相应的函数
if(!strcmp(buf4,"1aopen"))
  {
    HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_RESET);
    printf("加热片已开启\n");
    Gui_DrawFont_GBK16(0,100,NULL,WHITE,(uint8_t *)"Heating open");
    memset(buf4,0,sizeof(buf4));
  }
  else if(!strcmp(buf4,"1close"))
  {
    HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_SET);
    Gui_DrawFont_GBK16(0,100,NULL,WHITE,(uint8_t *)"Heating close");
    memset(buf4,0,sizeof(buf4));
    
  }
  
  if(!strcmp(buf4,"2aopen"))
  {
    HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_RESET);
    printf("冷凝片启动\n");
    Gui_DrawFont_GBK16(0,80,NULL,WHITE,(uint8_t *)"Condente open");
    memset(buf4,0,sizeof(buf4));
    
  }
  else if(!strcmp(buf4,"2close"))
  {
    HAL_GPIO_WritePin(GPIOB,GPIO_PIN_1,GPIO_PIN_SET);
    Gui_DrawFont_GBK16(0,80,NULL,WHITE,(uint8_t *)"Condente close");
    memset(buf4,0,sizeof(buf4));
    
  }
  
  if(!strcmp(buf4,"3aopen"))
  {
    HAL_GPIO_WritePin(GPIOB,GPIO_PIN_2,GPIO_PIN_RESET);
    printf("风机启动\n");
    Gui_DrawFont_GBK16(0,60,NULL,WHITE,(uint8_t *)"Draught open");
    memset(buf4,0,sizeof(buf4));
    
  }
  else if(!strcmp(buf4,"3close"))
  {
    HAL_GPIO_WritePin(GPIOB,GPIO_PIN_2,GPIO_PIN_SET);
    Gui_DrawFont_GBK16(0,60,NULL,WHITE,(uint8_t *)"Draught close");
    memset(buf4,0,sizeof(buf4));
    
  }
  }
/* USER CODE END 4 */
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

image.gif


相关文章
|
30天前
|
开发框架 供应链 监控
并行开发模型详解:类型、步骤及其应用解析
在现代研发环境中,企业需要在有限时间内推出高质量的产品,以满足客户不断变化的需求。传统的线性开发模式往往拖慢进度,导致资源浪费和延迟交付。并行开发模型通过允许多个开发阶段同时进行,极大提高了产品开发的效率和响应能力。本文将深入解析并行开发模型,涵盖其类型、步骤及如何通过辅助工具优化团队协作和管理工作流。
57 3
|
1月前
|
XML JSON API
ServiceStack:不仅仅是一个高性能Web API和微服务框架,更是一站式解决方案——深入解析其多协议支持及简便开发流程,带您体验前所未有的.NET开发效率革命
【10月更文挑战第9天】ServiceStack 是一个高性能的 Web API 和微服务框架,支持 JSON、XML、CSV 等多种数据格式。它简化了 .NET 应用的开发流程,提供了直观的 RESTful 服务构建方式。ServiceStack 支持高并发请求和复杂业务逻辑,安装简单,通过 NuGet 包管理器即可快速集成。示例代码展示了如何创建一个返回当前日期的简单服务,包括定义请求和响应 DTO、实现服务逻辑、配置路由和宿主。ServiceStack 还支持 WebSocket、SignalR 等实时通信协议,具备自动验证、自动过滤器等丰富功能,适合快速搭建高性能、可扩展的服务端应用。
100 3
|
19天前
|
监控 安全 Serverless
"揭秘D2终端大会热点技术:Serverless架构最佳实践全解析,让你的开发效率翻倍,迈向技术新高峰!"
【10月更文挑战第23天】D2终端大会汇聚了众多前沿技术,其中Serverless架构备受瞩目。它让开发者无需关注服务器管理,专注于业务逻辑,提高开发效率。本文介绍了选择合适平台、设计合理函数架构、优化性能及安全监控的最佳实践,助力开发者充分挖掘Serverless潜力,推动技术发展。
41 1
|
27天前
|
机器学习/深度学习 安全 搜索推荐
中国CRM市场深度解析:本土化定制开发的领军厂商与未来趋势
国内CRM软件企业正面临日益增长的本土定制需求,这不仅考验服务商的综合水平,也推动了市场的快速发展。本文将深入解析中国CRM市场的现状,探讨领军厂商的优势,并预测未来趋势,包括智能化、集成化、本土化与国际化并行及云服务模式的普及。
|
9天前
|
开发工具 Android开发 数据安全/隐私保护
探索移动应用的世界:从开发到操作系统的全面解析
【10月更文挑战第33天】在数字化时代,移动应用已成为我们日常生活中不可或缺的一部分。本文将深入探讨移动应用的开发过程,包括编程语言、开发工具和框架的选择,以及如何构建用户友好的界面。同时,我们还将分析移动操作系统的核心功能和安全性,以帮助读者更好地理解这些应用程序是如何在各种设备上运行的。无论你是开发者还是普通用户,这篇文章都将为你揭示移动应用背后的奥秘。
|
16天前
|
机器学习/深度学习 Android开发 UED
移动应用与系统:从开发到优化的全面解析
【10月更文挑战第25天】 在数字化时代,移动应用已成为我们生活的重要组成部分。本文将深入探讨移动应用的开发过程、移动操作系统的角色,以及如何对移动应用进行优化以提高用户体验和性能。我们将通过分析具体案例,揭示移动应用成功的关键因素,并提供实用的开发和优化策略。
|
1月前
【寄存器开发速成】半小时入门STM32寄存器开发(二)
【寄存器开发速成】半小时入门STM32寄存器开发(二)
|
1月前
|
芯片
【寄存器开发速成】半小时入门STM32寄存器开发(一)
【寄存器开发速成】半小时入门STM32寄存器开发(一)
|
1月前
|
XML Java 数据格式
手动开发-简单的Spring基于注解配置的程序--源码解析
手动开发-简单的Spring基于注解配置的程序--源码解析
46 0
|
1月前
|
XML Java 数据格式
手动开发-简单的Spring基于XML配置的程序--源码解析
手动开发-简单的Spring基于XML配置的程序--源码解析
79 0

推荐镜像

更多