MySQL单表千万级数据查询优化大家怎么说(评论有亮点)

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 单表千万级数据是MySQL查询的一个坎,可能还不是天花板。“一个人走的慢,一群人走的快”,通过讨论可以发现MySQL千万数据的全貌大概是怎样的。

CerroTololoTrails_ap161022.jpg

题图来自APOD

上次写了一篇MySQL优化实战的文章“MySQL千万级数据从190秒优化到1秒全过程”。

这篇文章主要还是在实战MySQL优化,所以从造数据到查询SQL优化SQL都没有业务或者其它依赖,优化的技巧也不涉及软件架构就是纯SQL优化。

由于笔者经验有限和篇幅限制没有展开讲很多细节,其中有很多争议的地方也在原帖进行了回复。

通过大家的讨论学习到很多东西。有句话在技术学习这块说的挺好,“一个人走的慢,一群人走的快”。通过讨论可以发现MySQL千万数据的全貌大概是怎样的。

以下enjoy~

千万数据的信息

原帖中实际产生的数据量有1500W行数据,以下基于此说明。

名称 说明
行数 1500W
磁盘大小 字段少,接近2GB
单表查询时间 查询快
关联查询时间 查询很慢

《阿里巴巴Java开发手册》有这么一条规约:

【推荐】单表行数超过 500 万行或者单表容量超过 2GB,才推荐进行分库分表。
说明:如果预计三年后的数据量根本达不到这个级别,请不要在创建表时就分库分表。

千万级数据在互联网公司是推荐分表的。笔者从事的传统行业千万级的大表还是很常见的~

笔者由此得出“千万级数据对于MySQL来说就是不太合理的一个存在”,至于是否合理也是仁者见仁智者见智了~

怎么优化的

  • 怼索引
  • 怼覆盖索引
  • 小表驱动大表
  • 强制索引
  • 减少数据量

优化技巧中,其中有的有效、有的没效果。

尤其是很多优化技巧涉及到千万级才会出现,也就是隐藏技巧,比如强制索引。最实用的还是覆盖索引。

有些技巧只是提及没有实际操作。以后会按照这种方式展展开写,欢迎关注。

大家怎么说

反向逻辑的

方向操作主要就是反PUA了,虽然写的文章水平一般,但是这波方向操作我是佩服的~
虽然技术确实能实现需求,但常在职场主打的一个就是身心愉悦~

  • 软件层面优化不了,那就交给硬件,硬件层面优化不了,那就交给人力

  • 你记住代码和人有一个能跑就行

  • 老板说,优化不了代码我们就优化需求,优化不了需求我们就优化客户

  • 千辛万苦优化到1秒,领导来了一句:“谁让你这么改的?给我改回去!”

  • 哈哈哈,甲方还没提需求,你就给我优化了,谁给钱啊

  • 迟早都是Oracle收割的韭菜

  • 我有5亿钱包数据,怎么优化都打不到秒出!

反对的

这个意见没毛病,千万数据在MySQL也很常见。
但是笔者在阿里云做过验证,配置是8核心16G内存,同样的脚本在阿里云MYSQL中验证最少还是需要3s+
单机MYSQL千万数据看来确实是很多业务无法允许的瓶颈了~

  • 哈哈,需求从“统计每个用户的订单总额”,变成“统计某几个用户的订单总额”,你小子是懂优化的

  • 优化不了就改需求是吧?优化思路是不对的,最后输出结果都不一样了

  • 抛开需求谈设计就是耍流氓...

  • 最后一部分,真 到了一秒

  • 单表千万数据量没什么不合理的,一次group by出所有的用户不分页才不合理。

  • 那是你们家的mysql支持不了单表1000w。我们家的可以,而且速度还很好。

支持的

主打的就是实战优化技巧,希望多多输出~学习输出实战才能闭环增长呢~

  • 本身这种全量查询大量数据的需求就不合理,当然是要优化业务了

  • 虽然但是哈哈哈哈 但是你这个文章给出的SQL和存储过程都可以直接使用并且调试步骤都有,拿来试试玩玩涨涨操作知识也挺好的呀~ 支持~

技术类的

这部分讨论主要停留在技术层面,软件硬件优化还是有很多的,可以看出平台里面还是很多潜水大牛的~

  • 我记得mysql的join缓冲区,有个设置,调大点,join效率会有明显提升
  • 是的 但是一般都有自适应

  • 数据库级别优化本来就是有极限的,最终都得靠应用级别优化

  • 个人习惯先用小表驱动大表, 添加索引和减少数据量进行优化。因为覆盖索引添加了查询的列很多时候只优化了当下的查询,但如果有很多相类似的sql要查询就很容易创建越来越多列,查询时间又没有减少

  • 千万级的数据量得用分库分表,还要用缓存,光索引是没有用的,在想啥呢

  • mysql适合互联网科技服务的业务场景,就是用户只看自己的数据,联表业务场景不多的情况。要是来一个传统企业级数据场景就难搞了,比如银行流水数据,企业内部财务订单数据,几个千万级的大表级联就很慢很慢了,这时候还是推荐上oracle和sqlserver商业数据库了,再不济也得来个pg。免费mysql存储海量数据的代价是人员成本高,硬件授权虽贵,但现在开发人员工资也不低。

  • 之前测试过阿里云的mysql,8c16g ssd 配置,1.2亿条数据 查询 23 毫秒,感觉阿里云有点厉害

  • 同样的脚本在阿里云MYSQL中验证最少还是需要3s+~配置是8核心16G内存,单机MYSQL千万数据看来确实是很多业务无法允许的瓶颈了~

  • 首先,MySQL千万数据,在MySQL8.0以上的版本默认配置下轻松驾驭。除非你是7年以上的老服务器,或者是虚拟机,或者你本地点测试。分区优化后,2000万性能损失也不大。隔壁部门单表5000万了,还在叠加。另外,文章整体不错,点赞!还有,分表慎用,切勿只为数据分流而分表。

  • 还有物理配置也算一个

  • MySQL没碰到,二十多年前,在Oracle上遇到,新系统,全系统初始化库存的时候,同事写的脚本,要执行六个小时,调整了下,大概不到二十分钟。

他山之石

文章确实还有很多完善的地方,比如硬件配置是性能测试的基准没有体现出来。

MySQL千万数据究竟大吗?结论是大但不是天花板。

不是关系型数据库的天花板也不是软件优化的天花板。

但是怎么说,MySQL作为被Oracle收购的一个开源软件,更像是一个弃子一样,所以各大云服务厂商都优化和迭代了MySQL,性能好很多~

软件的分层设计很重要,缓存、软件、代理、持久化每个环节的综合设计可以让软件很能打,平摊各个环节的取舍也就降低了风险~

关于作者

来自一线全栈程序员nine的探索与实践,持续迭代中。

欢迎评论、点赞、收藏、关注。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
7月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
5月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
320 0
|
6月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
278 0
|
4月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
410 10
|
4月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
232 6
|
5月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
151 2
|
5月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
160 0
|
5月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
238 0
|
7月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
|
7月前
|
缓存 JSON 关系型数据库
MySQL 查询优化分析 - 常用分析方法
本文介绍了MySQL查询优化分析的常用方法EXPLAIN、Optimizer Trace、Profiling和常用监控指标。