如何设计一个秒杀系统,(高并发高可用分布式集群)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 【7月更文挑战第4天】设计一个高并发、高可用的分布式秒杀系统是一个非常具有挑战性的任务,需要从架构、数据库、缓存、并发控制、降级限流等多个维度进行考虑。

设计一个高并发、高可用的分布式秒杀系统是一个非常具有挑战性的任务,需要从架构、数据库、缓存、并发控制、降级限流等多个维度进行考虑。以下是一个典型的秒杀系统设计思路:

1. 系统架构

微服务架构

  • 拆分服务:将系统功能拆分为多个微服务,如用户服务、商品服务、订单服务、秒杀服务等。
  • 负载均衡:使用Nginx或其他负载均衡器将请求分发到不同的服务实例,以均衡负载。
  • 服务注册与发现:使用Eureka、Zookeeper等服务注册与发现组件管理服务实例。

分布式部署

  • 多数据中心:在多个数据中心部署服务,提高系统的灾备能力。
  • 水平扩展:通过增加服务器实例来扩展系统处理能力。

2. 数据库设计

数据库分库分表

  • 分库:将数据库按业务逻辑拆分成多个子库,如用户库、商品库、订单库等。
  • 分表:将大表拆分成多个小表,减少单表压力,提高查询效率。

数据库读写分离

  • 主从复制:将数据库分为主库和从库,主库负责写操作,从库负责读操作,通过主从复制保持数据一致性。
  • 读写分离:通过中间件(如MyCat)或应用层进行读写分离,提高读操作的并发能力。

3. 缓存设计

使用缓存减轻数据库压力

  • 本地缓存:在应用服务器上使用本地缓存(如Guava Cache)存储热点数据,减少远程访问延迟。
  • 分布式缓存:使用Redis、Memcached等分布式缓存系统存储热点数据,提高数据访问速度。

缓存预热与更新

  • 缓存预热:在秒杀开始前,将商品库存、活动信息等数据加载到缓存中。
  • 缓存更新:使用消息队列(如Kafka、RabbitMQ)异步更新缓存,确保数据一致性。

4. 并发控制

限流与降级

  • 限流:在Nginx、应用层、数据库层设置限流策略,防止瞬时高并发请求冲击系统。
  • 降级:在系统负载过高时,临时关闭部分非核心功能或返回友好提示信息。

排队机制

  • 令牌桶算法:在秒杀服务前设置令牌桶,控制请求进入的速度。
  • 排队队列:使用消息队列(如RabbitMQ)对请求进行排队处理,避免瞬时高并发。

5. 库存扣减策略

原子操作与乐观锁

  • 原子操作:使用数据库原子性操作(如MySQL的UPDATE语句)实现库存扣减。
  • 乐观锁:在扣减库存时使用乐观锁机制(如版本号、CAS),避免并发修改库存。

异步扣减

  • 预扣减:在缓存中预扣减库存,用户支付成功后再正式扣减数据库库存。
  • 异步处理:使用消息队列异步处理库存扣减,减轻数据库压力。

6. 数据一致性

分布式事务

  • TCC:使用TCC(Try-Confirm-Cancel)模式实现分布式事务,确保数据一致性。
  • 消息最终一致性:通过消息队列实现最终一致性,在消息消费成功后更新数据库状态。

7. 安全防护

防止刷单与作弊

  • 验证码:在秒杀请求前设置验证码,防止恶意刷单。
  • IP限流:对单个IP的请求进行限流,防止恶意请求。

数据加密与签名

  • 数据加密:对敏感数据进行加密传输,防止数据泄露。
  • 签名验证:对重要请求参数进行签名验证,确保请求的合法性。

8. 监控与报警

全链路监控

  • 日志监控:使用ELK(Elasticsearch、Logstash、Kibana)等日志系统监控系统日志。
  • 性能监控:使用Prometheus、Grafana等工具监控系统性能指标(如CPU、内存、请求响应时间等)。

异常报警

  • 报警系统:设置报警规则,当系统出现异常(如高延迟、高错误率)时,发送报警通知。

示例架构图

plaintext复制代码

           +-----------+
           |  Client   |
           +-----------+
                |
                v
      +--------------------+
      |    Load Balancer   |
      +--------------------+
                |
                v
      +------------------------+
      |    API Gateway (Nginx) |
      +------------------------+
                |
                v
  +-------------+-------------+-------------+
  |             |             |             |
  v             v             v             v
+------+     +------+     +------+     +------+
| User |     | Prod |     | Order|     |Seckill|
| Svcs |     | Svcs |     | Svcs |     | Svcs |
+------+     +------+     +------+     +------+
  |             |             |             |
  v             v             v             v
+------+     +------+     +------+     +------+
|Cache |     |Cache |     |Cache |     |Cache |
|Redis |     |Redis |     |Redis |     |Redis |
+------+     +------+     +------+     +------+
  |             |             |             |
  v             v             v             v
+------+     +------+     +------+     +------+
| DB   |     | DB   |     | DB   |     | DB   |
+------+     +------+     +------+     +------+
  |             |             |             |
  v             v             v             v
+------+     +------+     +------+     +------+
| MQ   |     | MQ   |     | MQ   |     | MQ   |
+------+     +------+     +------+     +------+
  |
  v
+------+
| Moni |
| toring|
+------+


代码示例(Java + Spring Boot)

以下是一个简单的秒杀服务的代码示例:

java复制代码

@RestController
@RequestMapping("/seckill")
public class SeckillController {

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    @Autowired
    private SeckillService seckillService;

    @RequestMapping(value = "/{productId}", method = RequestMethod.POST)
    public ResponseEntity<String> seckill(@PathVariable("productId") long productId) {
        // 1. 校验请求合法性(如验证码、用户身份等)

        // 2. 预扣减库存
        String stockKey = "seckill:stock:" + productId;
        Long stock = redisTemplate.opsForValue().decrement(stockKey);
        if (stock == null || stock < 0) {
            return ResponseEntity.status(HttpStatus.NOT_FOUND).body("Sold out");
        }

        // 3. 生成订单
        boolean result = seckillService.createOrder(productId);
        if (!result) {
            // 回退预扣减库存
            redisTemplate.opsForValue().increment(stockKey);
            return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body("Failed to create order");
        }

        return ResponseEntity.ok("Seckill success");
    }
}

@Service
public class SeckillService {

    @Autowired
    private OrderRepository orderRepository;

    @Transactional
    public boolean createOrder(long productId) {
        // 扣减数据库库存
        int updateCount = productRepository.decreaseStock(productId);
        if (updateCount <= 0) {
            return false;
        }

        // 创建订单
        Order order = new Order();
        order.setProductId(productId);
        order.setCreateTime(new Date());
        orderRepository.save(order);

        return true;
    }
}

总结

设计一个高并发、高可用的分布式秒杀系统需要全面考虑系统架构、数据库设计、缓存策略、并发控制、降级限流、安全防护等多个方面。通过合理的架构设计和技术选型,可以在秒杀活动中有效应对高并发请求,确保系统的稳定性和高可用性。

相关文章
|
2月前
|
人工智能 算法 前端开发
超越Prompt Engineering:揭秘高并发AI系统的上下文工程实践
本文系统解析AI工程范式从Prompt Engineering到Context Engineering的演进路径,深入探讨RAG、向量数据库、上下文压缩等关键技术,并结合LangGraph与智能体系统架构,助力开发者构建高可靠AI应用。
299 1
|
2月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
220 2
|
7月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
|
5月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
1607 57
|
4月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
1159 7
|
5月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
398 3
|
6月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
1822 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
6月前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
|
7月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
529 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
11月前
|
存储 分布式计算 负载均衡
分布式计算模型和集群计算模型的区别
【10月更文挑战第18天】分布式计算模型和集群计算模型各有特点和优势,在实际应用中需要根据具体的需求和条件选择合适的计算架构模式,以达到最佳的计算效果和性能。
397 62

热门文章

最新文章