[AI Perplexica] 深入解析,AI 架构揭秘

简介: 了解 Perplexica 的核心架构,探索其用户界面、代理链、大型语言模型、嵌入模型等关键组件的运作方式,揭秘 AI 如何高效处理复杂查询任务。

上一篇文章,我们对 Perplexica 做了个基本介绍,包括特点,以及如何安装。

今天,我们来深入看下 Perplexica 的架构。

Perplexica 的架构

Perplexica 的架构由以下关键组件组成:

  1. 用户界面: 一个基于网页的界面,允许用户与 Perplexica 互动以搜索图像、视频等内容。
  2. 代理/链: 这些组件预测 Perplexica 的下一步动作,理解用户查询,并决定是否需要进行网络搜索。
  3. SearXNG: 一个用于网络搜索的元数据搜索引擎。
  4. 大型语言模型 (LLMs): 代理和链利用大型语言模型来执行任务,如理解内容、撰写回应和引用来源。例子包括 Claude、GPT 等。
  5. 嵌入模型: 为了提高搜索结果的准确性,嵌入模型使用相似性搜索算法(如余弦相似性和点积距离)对结果进行重新排序。

Perplexica 如何工作?

我们将通过一个用户询问 “空调是如何工作的?” 的示例来理解 Perplexica 的工作原理。我们将分步骤解释这个过程,以便更容易理解。步骤如下:

  1. 通过 WS 将消息发送到后台服务器,在那里它调用链。链将取决于您的焦点模式。在本例中,我们假设使用 “webSearch” 焦点模式。
    • 消息通过 web socket 发送
  2. 链现在被调用;首先,将消息传递到另一条链,在那里它首先预测(使用聊天记录和问题)是否需要来源和网络搜索。如果需要,它将生成一个查询(根据聊天记录)进行网络搜索,我们将在稍后讨论。如果不需要,链将在此结束,然后启动答案生成链,也称为响应生成器。
    • 这部分,也可以称为 query rewrite 或者 pre-llm
  3. 第一条链返回的查询被传递到 SearXNG 以搜索网络信息。
    • 传统搜索,这里使用 SearXNG
  4. 检索信息后,它基于关键词搜索。然后我们将信息和查询转换为嵌入,并进行相似性搜索,以找到最相关的来源来回答查询。
    • 传统搜索引擎返回信息较多,用 embedding model 进行相似性搜索
  5. 完成所有这些操作后,来源被传递给响应生成器。此链获取所有聊天记录、查询和来源,并生成一个响应,该响应会被流式传输到 UI。
    • 这里应该是调用 LLM ,传聊天记录,查询,来源,一起给 LLM ,然后 LLM 生成答案,流式传给 UI

答案如何引用?

LLMs 被提示这样做。我们提示它们很好地自行引用答案,并使用一些 UI 魔法将其显示给用户。

图片和视频搜索

图片和视频搜索以类似的方式进行。首先生成查询,然后我们在网上搜索与查询匹配的图片和视频。然后将这些结果返回给用户。


相关文章
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer架构:重塑现代AI的核心引擎
Transformer架构:重塑现代AI的核心引擎
313 98
|
11天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
188 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
12天前
|
人工智能 数据可视化 数据处理
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
260 3
AI智能体框架怎么选?7个主流工具详细对比解析
|
11天前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
162 7
|
11天前
|
传感器 人工智能 数据可视化
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型虽强,但缺乏行动力。AI智能体通过工具调用、环境感知与自主决策,实现从“理解”到“执行”的跨越。本文解析主流智能体框架,助你根据技术能力、任务复杂度与业务目标,选择最适合的开发工具,从入门到落地高效构建智能系统。(238字)
147 7
|
13天前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
217 6
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
244 8
|
16天前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
13天前
|
存储 监控 NoSQL
Redis高可用架构全解析:从主从复制到集群方案
Redis高可用确保服务持续稳定,避免单点故障导致数据丢失或业务中断。通过主从复制实现数据冗余,哨兵模式支持自动故障转移,Cluster集群则提供分布式数据分片与水平扩展,三者层层递进,保障读写分离、容灾切换与大规模数据存储,构建高性能、高可靠的Redis架构体系。
|
16天前
|
人工智能 自然语言处理 前端开发
深度解析Playwright MCP:功能、优势与挑战,AI如何提升测试效率与覆盖率
Playwright MCP通过AI与浏览器交互,实现自然语言驱动的自动化测试。它降低门槛、提升效率,助力测试工程师聚焦高价值工作,是探索性测试与快速验证的新利器。

热门文章

最新文章

推荐镜像

更多
  • DNS