空间单细胞|在Seurat中对空间数据进行分析(4)

简介: 空间单细胞|在Seurat中对空间数据进行分析(4)

引言

在这篇指南中,我们介绍了Seurat的一个新扩展功能,用以分析新型的空间解析数据,将重点介绍由不同成像技术生成的三个公开数据集。

  • Vizgen MERSCOPE(用于小鼠大脑研究)
  • Nanostring CosMx空间分子成像仪(用于FFPE人类肺组织)
  • Akoya CODEX(用于人类淋巴结研究)

人体淋巴结:Akoya CODEX 系统

这个数据集是通过 Akoya CODEX 系统创建的,该系统能够进行多路复用的空间分辨蛋白质分析,逐步展示抗体的结合过程。这个数据集展示了一个来自人类淋巴结的组织切片,由佛罗里达大学在人类生物分子图谱计划(HuBMAP)框架下生成。数据集中包含了28个蛋白质标记,这些蛋白质的强度是利用Akoya处理器流水线进行量化的,最终生成了一个CSV文件,该文件记录了每个细胞中各个标记的强度值以及它们的细胞位置坐标。

我们首先通过 Seurat 软件包中的 LoadAkoya() 函数来导入 HuBMAP 数据集。

codex.obj <- LoadAkoya(filename = "/brahms/hartmana/vignette_data/LN7910_20_008_11022020_reg001_compensated.csv",
    type = "processor", fov = "HBM754.WKLP.262")

我们现在可以运行无监督分析来识别细胞簇。为了标准化蛋白质数据,我们使用基于中心对数比的标准化,就像我们通常应用于 CITE-seq 数据的蛋白质模态一样。然后我们运行降维和基于图的聚类。

codex.obj <- NormalizeData(object = codex.obj, normalization.method = "CLR", margin = 2)
codex.obj <- ScaleData(codex.obj)
VariableFeatures(codex.obj) <- rownames(codex.obj)  # since the panel is small, treat all features as variable.
codex.obj <- RunPCA(object = codex.obj, npcs = 20, verbose = FALSE)
codex.obj <- RunUMAP(object = codex.obj, dims = 1:20, verbose = FALSE)
codex.obj <- FindNeighbors(object = codex.obj, dims = 1:20, verbose = FALSE)
codex.obj <- FindClusters(object = codex.obj, verbose = FALSE, resolution = 0.4, n.start = 1)

我们可以基于基于蛋白质强度的 UMAP 嵌入或基于它们的空间位置来可视化细胞簇。

DimPlot(codex.obj, label = TRUE, label.box = TRUE) + NoLegend()

ImageDimPlot(codex.obj, cols = "parade")

每个标记的表达模式清晰地揭示了细胞的多样性和它们在空间上的排列,例如 Lyve1 代表的淋巴内皮细胞、CD34 代表的血管内皮细胞,以及 CD21 代表的 B 细胞。正如所料,内皮细胞形成了血管结构,而 B 细胞则是构成生发中心这一特殊微环境的重要角色。在这个预印本论文中,您可以进一步了解这个数据集中的蛋白质标记详情,以及在人类淋巴组织中的细胞网络情况。

p1 <- ImageFeaturePlot(codex.obj, fov = "HBM754.WKLP.262", features = c("CD34", "CD21", "Lyve1"),
    min.cutoff = "q10", max.cutoff = "q90")
p2 <- ImageDimPlot(codex.obj, fov = "HBM754.WKLP.262", cols = "parade")
p1 + p2

这些数据集为探索细胞在空间上如何有序分布提供了宝贵的学习机会。敬请期待 Seurat 未来版本带来的新功能,它们将帮助我们更深入地研究细胞的空间位置与其分子状态之间的联系。

相关文章
|
6月前
|
存储 编解码 数据可视化
单细胞分析|Seurat中的跨模态整合
在单细胞基因组学中,新方法“桥接整合”允许将scATAC-seq、scDNAme等技术的数据映射到基于scRNA-seq的参考数据集,借助多组学数据作为桥梁。研究展示了如何将scATAC-seq数据集映射到人类PBMC的scRNA-seq参考,使用10x Genomics的多组学数据集。Azimuth ATAC工具提供了自动化的工作流程,支持在R和网页平台上执行桥接整合。通过加载和预处理不同数据集,映射scATAC-seq数据并进行评估,证明了映射的准确性和细胞类型预测的可靠性。此方法扩展了参考映射框架,促进了不同技术间的互操作性。
116 5
|
5月前
|
存储 数据可视化 算法
空间单细胞|基于图像的空间数据分析(2)
空间单细胞|基于图像的空间数据分析(2)
112 0
|
16天前
|
数据可视化 搜索推荐
单细胞分析 | 基因组区域的可视化 (2)
单细胞分析 | 基因组区域的可视化 (2)
24 0
单细胞分析 | 基因组区域的可视化 (2)
|
24天前
|
存储 数据可视化 搜索推荐
单细胞分析 | 基因组区域的可视化 (1)
单细胞分析 | 基因组区域的可视化 (1)
29 0
单细胞分析 | 基因组区域的可视化 (1)
|
1月前
|
存储 数据可视化 Java
单细胞|Signac 进行 Motif 分析
单细胞|Signac 进行 Motif 分析
46 2
|
1月前
|
存储 算法 数据可视化
单细胞分析 | Cicero+Signac 寻找顺式共可及网络
单细胞分析 | Cicero+Signac 寻找顺式共可及网络
25 0
|
5月前
|
存储 编解码 数据可视化
单细胞空间|在Seurat中对基于图像的空间数据进行分析(1)
单细胞空间|在Seurat中对基于图像的空间数据进行分析(1)
53 5
|
5月前
|
数据可视化 数据挖掘 数据库
空间单细胞|基于图像的数据分析(3)
空间单细胞|基于图像的数据分析(3)
47 0
|
6月前
|
存储 数据可视化 数据挖掘
单细胞分析(Signac): PBMC scATAC-seq 基因组区域可视化
单细胞分析(Signac): PBMC scATAC-seq 基因组区域可视化
50 0
|
6月前
|
数据可视化 数据挖掘 索引
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码2
R语言层次聚类、多维缩放MDS分类RNA测序(RNA-seq)乳腺发育基因数据可视化|附数据代码