使用explain优化慢查询的业务场景分析

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介: `EXPLAIN` SQL 命令用于分析查询执行计划,揭示数据库如何处理查询,包括索引使用、扫描方式等。通过分析 `EXPLAIN` 输出,可优化查询性能,例如检查全表扫描、索引利用等。案例展示了如何通过 `EXPLAIN` 优化订单和学生课程查询,通过添加索引、子查询过滤等方式减少处理行数,提高效率。
  • 问:你最害怕的事情是什么?
  • 答:搓澡
  • 问:为什么?
  • 答:因为有些人一旦错过,就不在了

Explain 这个词在不同的上下文中有不同的含义。在数据库查询优化的上下文中,"EXPLAIN" 是一个常用的 SQL 命令,用于显示 SQL 查询的执行计划。执行计划是数据库如何执行查询的一个详细描述,包括它将使用哪些索引、表的连接顺序、表的扫描方式等信息。

在 SQL 中,使用 "EXPLAIN" 可以提供以下字段的信息:
>

  • id: 表示查询中的各个部分的标识符。
  • select_type: 查询类型,比如简单查询、联合查询、子查询等。
  • table: 涉及的表名。
  • partitions: 查询涉及的分区信息。
  • type: 连接类型,如全表扫描、索引扫描等。
  • possible_keys: 可能使用的索引列表。
  • key: 实际使用的索引。
  • key_len: 使用的索引长度。
  • ref: 索引列上使用的列或常量。
  • rows: 估计需要检查的行数。
  • filtered: 行过滤的百分比。
  • Extra: 额外信息,可能包含诸如"Using filesort"、"Using temporary"等信息。

下面,V 哥通过两个案例来详细说明一下如何使用 Explain来优化 SQL。

案例一:

场景设定

假设我们有一个电子商务网站的数据库,其中有一个名为 orders 的表,它记录了用户的订单信息。表结构大致如下:

    id: 订单的唯一标识符
    user_id: 下单用户的ID
    product_id: 购买的产品ID
    order_date: 下单日期
    quantity: 购买数量

问题

我们需要查询2024年1月1日之后所有用户的订单总数。

原始 SQL 查询

SELECT COUNT(*) FROM orders WHERE order_date > '2024-01-01';

步骤 1: 使用 EXPLAIN 分析查询

首先,我们使用 EXPLAIN 来查看当前查询的执行计划:

EXPLAIN SELECT COUNT(*) FROM orders WHERE order_date > '2024-01-01';

步骤 2: 分析 EXPLAIN 输出

假设 EXPLAIN 的输出显示如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE orders NULL range order_date NULL NULL NULL 10000 10.00 Using where; Using index

步骤 3: 识别问题

从 EXPLAIN 输出中,我们可以看到:

  • type 是 range,这意味着数据库将使用索引进行范围扫描,而不是全表扫描。
  • rows 估计为 10000,这可能表示查询需要检查大量行。
  • Extra 显示 Using where; Using index,表示使用了索引。

步骤 4: 优化 SQL

尽管查询已经使用了索引,但我们可能希望进一步优化性能。考虑到我们只需要统计总数,而不是具体的订单数据,我们可以:

  • 使用索引覆盖扫描:如果 order_date 索引包含 id,则可以避免回表查询,直接在索引中完成统计。

优化后的 SQL 可能如下:

SELECT COUNT(*) FROM orders USE INDEX (order_date) WHERE order_date > '2023-01-01';

步骤 5: 再次使用 EXPLAIN

使用优化后的查询再次运行 EXPLAIN:

EXPLAIN SELECT COUNT(*) FROM orders USE INDEX (order_date) WHERE order_date > '2023-01-01';

步骤 6: 分析优化后的输出

假设优化后的 EXPLAIN 输出显示:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE orders NULL index order_date order_date 4 NULL 10000 10.00 Using index; Backward index scan

步骤 7: 评估优化效果

  • type 现在是 index,表示使用了索引覆盖扫描。
  • Extra 显示 Using index; Backward index scan,表示查询仅使用了索引,没有回表。

通过这些步骤,我们对原始查询进行了分析和优化,提高了查询效率。在实际应用中,可能需要根据具体的数据库结构和数据分布进行更多的调整和优化。

案例二:

我们考虑一个更复杂的场景,涉及到多表查询和联结。

场景设定

假设我们有一个在线教育平台的数据库,其中有两个表:

1. students 表,存储学生信息:

  • student_id: 学生ID
  • name: 学生姓名
  • enrollment_date: 入学日期

2. courses 表,存储课程信息:

  • course_id: 课程ID
  • course_name: 课程名称

3. 还有一个 enrollments 表,存储学生的课程注册信息:

  • enrollment_id: 注册ID
  • student_id: 学生ID
  • course_id: 课程ID
  • enrollment_date: 注册日期

问题

我们需要查询所有在2024年注册了至少一门课程的学生的姓名和他们注册的课程数量。

原始 SQL 查询

SELECT s.name, COUNT(e.course_id) AS course_count
FROM students s
JOIN enrollments e ON s.student_id = e.student_id
GROUP BY s.name;

步骤 1: 使用 EXPLAIN 分析查询

EXPLAIN SELECT s.name, COUNT(e.course_id) AS course_count
FROM students s
JOIN enrollments e ON s.student_id = e.student_id
GROUP BY s.name;

步骤 2: 分析 EXPLAIN 输出

假设 EXPLAIN 的输出如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE s NULL ALL NULL NULL NULL NULL 1000 NULL NULL
1 SIMPLE e NULL ref student_id student_id 5 students.student_id 5000 NULL Using where

步骤 3: 识别问题

  • students 表使用了全表扫描(type 是 ALL),这意味着查询需要扫描整个 students 表。
  • enrollments 表使用了 ref 类型的联结,它使用了 student_id 索引。

步骤 4: 优化 SQL

我们可以通过以下方式优化查询:

  • 添加索引:如果 enrollments 表上的 enrollment_date 没有索引,考虑添加一个,以便快速过滤2023年的注册记录。
  • 过滤条件:在联结条件中添加过滤条件,减少需要联结的行数。

优化后的 SQL 可能如下:

SELECT s.name, COUNT(e.course_id) AS course_count
FROM students s
JOIN (
  SELECT course_id, student_id
  FROM enrollments
  WHERE enrollment_date >= '2023-01-01'
) e ON s.student_id = e.student_id
GROUP BY s.name;

步骤 5: 再次使用 EXPLAIN

使用优化后的查询再次运行 EXPLAIN。

步骤 6: 分析优化后的输出

假设优化后的 EXPLAIN 输出显示:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 PRIMARY s NULL ALL NULL NULL NULL NULL 1000 NULL NULL
2 DERIVED e NULL range enrollment_date NULL NULL NULL 500 10.00 Using where
1 SIMPLE <subquery2> NULL ref student_id student_id 5 s.student_id 500 NULL Using index

步骤 7: 评估优化效果

  • 子查询 e 现在使用 range 类型扫描,只获取2023年的注册记录,减少了行数。
  • 主查询现在使用 ref 类型联结,因为子查询结果已经通过索引 student_id 进行了优化。

通过这些步骤,我们对原始查询进行了分析和优化,减少了需要处理的数据量,提高了查询效率。在实际应用中,可能需要根据具体的数据库结构和数据分布进行更多的调整和优化。

最后

以上是 V 哥在整理的关于 EXPLAIN 在实际工作中的使用,并结合案例给大家作了分析,用熟 EXPLAIN 将大大改善你的 SQL 查询效率,你在工作中还用到哪些业务场景或案例,可以在评论区讨论,或者说出你遇到的问题,V 哥来帮你定位一下问题,关注威哥爱编程,每天精彩内容不错过。

相关文章
|
缓存 JavaScript Java
常见java OOM异常分析排查思路分析
Java虚拟机(JVM)遇到 OutOfMemoryError(OOM)表示内存资源不足。常见OOM情况包括:1) **Java堆空间不足**:内存被大量对象占用且未及时回收,或内存泄漏;解决方法包括调整JVM堆内存大小、优化代码及修复内存泄漏。2) **线程栈空间不足**:单线程栈帧过大或频繁创建线程;可通过优化代码或调整-Xss参数解决。3) **方法区溢出**:运行时生成大量类导致方法区满载;需调整元空间大小或优化类加载机制。4) **本机内存不足**:JNI调用或内存泄漏引起;需检查并优化本机代码。5) **GC造成的内存不足**:频繁GC但效果不佳;需优化JVM参数、代码及垃圾回收器
1032 7
常见java OOM异常分析排查思路分析
|
关系型数据库 MySQL 数据安全/隐私保护
关于Navicat连接MySQL 报 Authentication plugin ‘caching_sha2_password‘ cannot be loaded
关于Navicat连接MySQL 报 Authentication plugin ‘caching_sha2_password‘ cannot be loaded
1632 2
|
JSON 前端开发 Java
|
消息中间件 监控 NoSQL
Redis脑裂问题详解及解决方案
Redis脑裂问题是分布式系统中常见的复杂问题,合理配置Redis Sentinel、使用保护模式、采用分布式锁机制以及优化网络和客户端连接策略等措施,可以有效预防和解决脑裂问题。通过深入理解Redis脑裂问题的成因和影响,采取相应的解决方案,能够提高系统的可用性和数据一致性,保障Redis集群的稳定运行。希望本文能帮助你更好地理解和应对Redis脑裂问题。
1242 2
|
SQL Java 数据库连接
成功解决:was not registered for synchronization because synchronization is not active
这篇文章是关于解决Mybatis在同步过程中出现"was not registered for synchronization because synchronization is not active"错误的技术博客。
成功解决:was not registered for synchronization because synchronization is not active
|
网络协议
解决 curl: (7) Failed to connect to raw.githubusercontent.com port 443 ...
解决 curl: (7) Failed to connect to raw.githubusercontent.com port 443 ...
3417 1
|
运维 监控 Devops
DevOps 入门:基础知识与核心理念
【8月更文第30天】随着软件开发的复杂性和速度不断增加,传统的开发模式已经无法满足市场需求。DevOps 应运而生,它不仅是一种实践方法,也是一种文化和理念,旨在通过自动化和持续改进来提高软件交付的速度和质量。
758 1
|
缓存 NoSQL Redis
Redis问题之什么是主观下线状态和客观下线状态
Redis问题之什么是主观下线状态和客观下线状态
248 1
|
SQL 缓存 关系型数据库
MySQL|浅谈explain的使用
【7月更文挑战第11天】