【Java并发基础】Java内存模型解决有序性和可见性

简介: 【Java并发基础】Java内存模型解决有序性和可见性

前言

解决并发编程中的可见性和有序性问题最直接的方法就是禁用CPU缓存和编译器的优化。但是,禁用这两者又会影响程序性能。于是我们要做的是按需禁用CPU缓存和编译器的优化

如何按需禁用CPU缓存和编译器的优化就需要提到Java内存模型。Java内存模型是一个复杂的规范。其中最为重要的便是Happens-Before规则。下面我们先介绍如何利用Happens-Before规则解决可见性和有序性问题,然后我们再扩展简单介绍下Java内存模型以及我们前篇文章提到的重排序概念。

volatile

在前一篇文章介绍编译优化带来的有序性问题时,给出的一个解决办法时将共享变量使用volatile关键字修饰。volatile关键字的作用可以简单理解为①禁用重排序,保证程序的有序性;②禁用缓存,保证程序的可见性。

volatile关键字不是Java语言中的特产,C语言中也有,其最原始的意义就是禁用CPU缓存,使得每次访问均需要直接从内存中读写

如果我们声明一个volatile变量,那么也就会让编译器不能从CPU缓存中去读取这个变量,而必须从内存中读取。

class VolatileExample {
  int x = 0;        // 1
  volatile boolean v = false; //2
  public void writer() {    //3
    x = 42;
    v = true;
  }
  public void reader() {    //4
    if (v == true) {
      // 这里 x 会是多少呢?
    }
  }
}

在这段代码中,假设线程A执行了3即writer()方法,设置了x=42和v=true。线程B执行了4即reader()方法,线程B可以看见线程A设置的v为true,那么B读到的x值会是多少呢?(想一想再点击我) 这要分Java版本来说,在1.5之前,会出现x=0的情况。

由于可见性问题,线程A修改的x可能存储在CPU缓存中对线程B是不可见的,于是线程B获取到的x为0。

在Java1.5之后,线程B获取到的x一定就是42。

这是因为Java内存模型对volatile语义进行了增强。增强体现在Java内存模型中的Happens-Before规则上。

Happens-Before规则

Happends-Before规则表达的是:前面一个操作的结果对之后操作是可见的,描述的是两个操作的内存可见性。

Happens-Before约束了编译器的优化行为,虽允许编译器优化,但是要求编译器遵循一定的Happens-Before规则进行优化。

Happens-Before规则包括:

  • 程序顺序规则
    在一个线程中,前面的操作Happens-Before于后续的任意操作。
  • volatile变量规则
    对volatile变量的写操作相对于之后对该volatile变量的读操作是可见的。(这个语义可等价适用于原子变量)
    对volatile变量的写操作 Happens-Before 对该volatile变量的读操作
  • 传递性
    如果操作A Happens-Before 操作B并且操作B Happens-Before 操作C, 那么操作A Happens-Bofore 操作C。

利用程序顺序规则、volatile变量规则、传递性规则说明例子

根据程序顺序规则,在一个线程中,之前的操作是Happens-Before后续的操作,所以x=42; Happens-Before v=true;;根据volatile变量规则,对volatile变量的写操作相对于之后对该volatile变量的读操作是可见的,于是写变量v=ture;Happens-Before读变量v==true;;根据传递性,得出x=42;Happens-Before读变量v==true;于是,最终读出的x值会是42。

  • 管程中的锁规则
    对同一个锁的解锁 Happens-Before 后续对这个锁的加锁。
    (管程:是一种同步原语,在Java中就是指synchronized。)
  • 线程启动规则
    线程的启动操作(即Thread.start()) Happens-Before 该线程的第一个操作。
    主线程A启动子线程B,那么子线程B能够看到线程A在启动B之前的任意操作。
Thread B = new Thread(()->{
  // 主线程调用 B.start() 之前
  // 所有对共享变量的修改,此处皆可见
  // 此例中,var==77
});
// 此处对共享变量 var 修改
var = 77;
// 主线程启动子线程
B.start();
  • 线程结束规则
    线程的最后一个操作 Happens-Before 它的终止事件。
    主线程A等待子线程B完成(A调用B.join())。当B完成之后(主线程A中的join()返回),主线程A可以看见子线程的操作。看到针对的是对共享变量。
Thread B = new Thread(()->{
  // 此处对共享变量 var 修改
  var = 66;
});
// 例如此处对共享变量修改,
// 则这个修改结果对线程 B 可见
// 主线程启动子线程
B.start();
B.join()
// 子线程所有对共享变量的修改
// 在主线程调用 B.join() 之后皆可见
// 此例中,var==66
  • 中断规则
    线程对其他线程的中断操作 Happens-Before被中断线程所收到中断事件。
    一个线程在另一个线程上调用interrupt,必须在被中断线程检测到interrupt调用之前执行。(被中断线程的InterruptedException异常,或者第三个线程针对被中断线程的Thread.interrupted或者Thread.isInterrupted调用)
  • 析构器规则
    构造器中的最后一个操作 Happens-Before 析构器的第一个操作
    或者说,对象的构造器必须在启动该对象的析构器之前执行完成。

需要注意,A操作 Happens-Before B操作,但并不意味着A操作必须要在B操作之前执行。

Happens-Before表达的是前一个操作执行后的结果是对后续一个操作是可见的,且前一个操作按顺序排在第二个操作之前。

Java内存模型的抽象

共享变量可指代存储与堆内存中的实例域、静态域和数组元素,共享变量是线程间共享的。局部变量、方法定义参数和异常处理器参数不会在线程之间共享,所以,它们不会有内存可见性问题。

Java线程之间的通信由Java内存模型(Java Memory Model, JMM)控制,JMM决定了一个线程对共享变量的写入何时对另一个线程可见。

从抽象角度看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存存储了该线程以读/写共享变量的副本。

本地内存是JMM的一个抽象概念,实际并不存在,它主要是指代缓存、写缓冲区、寄存器以及其他的硬件和编译器优化。

Java内存模型的抽象示意图如下:(图来自程晓明的深入理解Java内存模型)

从上图来看,如果线程A和线程B要进行通信,需要进行两步:

  1. 线程A将本地内存A中更新过的共享变量刷新到主内存中
  2. 线程B从主内存中去读取线程A更新到主内存的共享变量

线程A和B的通信过过了主内存,JMM通过控制主内存和每个线程的本地内存之间的交互,来为Java程序员提供内存可见性的保证。

重排序

重排序分类

在执行程序时,为了提高性能,编译器和处理器常常会对指令做重排序处理。加上前面提到的编译器优化,重排序可以分为三种类型:

  1. 编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。即在单线程中,重排序指令后执行的结果与未重排序执行的结果一致,那么就可以允许这种优化。
  2. 指令级并行的重排序。现代处理器采用了指令级并行技术(Instruction-Level Parallelism, ILP)来将多条指令重叠执行。如果不存在数据依赖性,处理器便可以改变语句对应机器指令的执行顺序。
  3. 内存系统的重排序。由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。因为缓存可能会改变将写入变量提交到主内存的次序。

as-if-serial属性:在单线程情况下,虽然有可能不是顺序执行,但是经过重排序的执行结果要和顺序执行的结果一致。 编译器和处理器需要保证程序能够遵守as-if-serial属性。

数据依赖性:如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依赖性。编译器和处理器不能对“存在数据依赖关系的两个操作”执行重排序。

从Java源代码到最终执行的指令序列,会经历下面的三种重排序:(图来自程晓明的深入理解Java内存模型)

第一个属于编译器重排序,第二三个属于处理器重排序。这些重排序都可能会导致夺多线程出现内存可见性问题。

针对编译器的重排序,JMM会有编译器重排序规则禁止特定类型的编译器重排序,不会禁止所有类型的编译器重排序。

针对处理器重排序,JMM的处理器重排序规则会要求Java编译器在生成指令序列时,插入特定类型的内存屏障(memory barriers)指令,来禁止特定类型的处理器重排序。

JMM属于语言级的内存模型,它确保在不同的编译器和处理器平台上,通过禁止特定类型的编译器重排序和处理器重排序,为程序员提供一致的内存可见性保证。

内存屏障

处理器架构提供了一些特殊的指令(称为内存屏障)用来在需要共享数据时实现存储协调。JMM使编译器在适当的位置插入内存屏障指令来禁止特定类型的处理器重排序。

内存屏障指令可分为下列四类:

屏障类型 指令示例 说明
LoadLoad Barriers Load1;LoadLoad;Load2 确保Load1数据的装载,之前于Load2及所有后续装载指令的装载。
StoreStore Barriers Store1;StoreStore;Store2 确保Store1数据对其他处理器可见(刷新到内存),之前于Store2及所有后续存储指令的存储。
LoadStore Barriers Load1;LoadStore;Store2 确保Load1数据装载,之前于Store2及所有后续的存储指令刷新到内存。
StoreLoad Barriers Store1;StoreLoad;Load2 确保Store1数据对其他处理器变得可见(刷新到内存),之前于Load2及所有后续装载指令的装载。StoreLoad Barriers会使该屏障之前的所有内存访问指令(存储和装载指令)完成之后,才执行该屏障之后的内存访问指令。

JMM、Happens-Before和重排序规则之间的关系

(图来自程晓明的深入理解Java内存模型)

看图中的概括,一个Happens-Before规则对应于一个或者多个编译器和处理器重排序规则。

对Java程序员来说,只需要熟悉Happens-Before规则,就可以使程序避免遭受内存可见性问题,并且不用为了理解JMM提供的内存可见性保证而学习复杂的重排序规则以及这些规则的具体实现。

再谈volatile

为了不打乱前面的行文思路,于是就在后面补充关于volatile的知识。

volatile变量是Java语言提供的一种较弱的同步机制,用来确保将变量的更新操作都通知到其他线程。将变量声明为volatile类型后,编译器与运行时都会注意到这个变量是共享的,不会将该变量上的操作与其他内存操作一起重排序,即我们前面所说的保证程序有序性。volatile变量不会被缓存在寄存器或者CPU缓存中对其他处理器不可见,读取volatile类型的变量时总会返回最新写入值,即我们前面说的保证程序可见性。然而,频繁地访问 volatile 字段也会因为不断地强制刷新缓存而严重影响程序的性能。

从内存可见性角度来看,写入volatile变量相当于退出同步代码块,而读取volatile变量相当于进入同步代码块。然而,并不建议过度依赖volatile变量提供的可见性。如果在代码中依赖volatile变量来控制状态的可见性,通常比使用锁的代码更脆弱也更加难以理解。(下一篇文章将介绍Java并发中的同步机制)

仅当volatile变量能简化代码的实现以及对同步策略的验证时,才应该使用。

volatile变量的正确使用方式包括:确保自身状态的可见性,确保它们所引用对象的状态的可见性以及标识一些重要的程序生命周期事件的发生(例如,初始化或者关闭)。

下面的例子是volatile变量的一种典型用法:检查某个状态标记以判断是否退出循环。

volatile boolean asleep;
...
    while(!asleep)
        countSomeSheep();

为了能使这个程序正确执行,alseep必须要为volatile变量。否则,当asleep被另外一个线程修改时,执行判断的线程却发现不了。后面也会讲用锁操作也可以确保asleep更新操作的可见性,但是这将会使代码变得复杂。

需要注意,尽管volatile变量经常用于表示某种状态信息如某个操作完成、发生中断或者标记,但是volatile的语义是不足以确保递增操作(count++)的原子性 ,除非确保只有一个线程对变量执行写操作。后面将要介绍的同步机制中的加锁机制既可以确保可见性又可以确保原子性,而volatile变量只能确保可见性。

小结

行文思路总体看起来有点乱ε(┬┬﹏┬┬)3,不过这也不是有意为之。本打算是重点介绍Happens-Before规则,然后稍微介绍一点Java内存模型。可奈何中途瞥见了一个网友力推程晓明的深入理解Java内存模型,于是就去拜读了一遍。看完发现还是要补充介绍一些东西,于是补着补着就乱了。唉,也怪我这深入浅出介绍知识的能力不够,各位看官择其所需看看就好。

参考:

[1]极客时间专栏王宝令《Java并发编程实战》

[2]Brian Goetz.Tim Peierls. et al.Java并发编程实战[M].北京:机械工业出版社,2016

[3]程晓明.深入理解Java内存模型.https://www.infoq.cn/article/java_memory_model

相关文章
|
2月前
|
存储 缓存 安全
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
41 6
|
28天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
30 0
|
30天前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
7天前
|
存储 缓存 Java
【JavaEE】——内存可见性问题
volatile,一个线程读,一个线程写,两个线程互相读,多个线程多把锁
|
2月前
|
Java
Java内存模型
JMM(Java内存模型 )屏蔽了各种硬件和操作系统的内存访问差异,实现让Java程序在各平台下都能达到一致的内存访问效果,它定义了JVM如何将程序中的变量在主存中读取 具体定义为:所有变量都存在主存中,主存是线程共享区域;每个线程都有自己独有的工作内存,线程想要操作变量必须从主从中copy变量到自己的工作区,每个线程的工作内存是相互隔离的 由于主存与工作内存之间有读写延迟,且读写不是原子性操作,所以会有线程安全问题
|
2月前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
52 6
|
2月前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
47 2
|
8天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
10天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
10天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。

热门文章

最新文章