m基于Googlenet深度学习的运动项目识别系统matlab仿真,包括GUI界面

简介: **摘要:**在MATLAB 2022a中,基于GoogLeNet的运动识别系统展示优秀性能。GoogLeNet,又称Inception网络,通过结合不同尺寸卷积核的Inception模块实现深度和宽度扩展,有效识别复杂视觉模式。系统流程包括数据预处理、特征提取(前端层学习基础特征,深层学习运动模式)、池化、Dropout及全连接层分类。MATLAB程序示例展示了选择图像、预处理后进行分类的交互过程。当按下按钮,图像被读取、调整大小并输入网络,最终通过classify函数得到预测标签。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法涉及理论知识概要
基于GoogLeNet深度学习的运动项目识别系统,是利用深度神经网络技术,尤其是GoogLeNet架构,来自动识别视频或图像中的人类运动类型的过程。GoogLeNet(也称为Inception网络)在2014年由Google团队提出,因其高效的结构设计和在ImageNet大规模视觉识别挑战赛中的优异表现而闻名。

   GoogLeNet的核心创新之一是Inception模块,它通过在一个模块中组合不同大小的卷积核(例如1x1,3x3,5x5),实现了在不显著增加计算成本的前提下,有效增加网络的深度和宽度。这样的设计能够捕捉多种尺度的特征,对于识别复杂的视觉模式如人类的运动至关重要。

9c905dd092b866e86b407407abe4f2c6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

运动识别流程
数据预处理:首先,收集包含各种运动项目的视频或图像数据,对其进行裁剪、缩放、归一化等预处理操作,使其适配网络的输入要求。

特征提取:利用GoogLeNet的多层结构进行特征提取。网络的前端层学习基本的边缘和纹理特征,而更深的层则逐渐学习更复杂的运动模式和人体姿势特征。

池化和Dropout:网络中包含最大池化层,用于降低空间维度并保持重要的特征,同时加入Dropout层以减少过拟合风险。

全连接层与分类:最后,通过全连接层(FC)将提取的特征映射到运动类别的概率分布,使用Softmax函数进行概率化,公式为:

84ee0dc99e1f4d4e8b4c18416c3eb83f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   基于GoogLeNet的运动识别系统,通过复杂的网络架构和深度学习技术,能够高效地从视频或图像中捕捉和分析人类运动特征,进而识别出具体的运动类型。

3.MATLAB核心程序```% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
global Predicted_Label;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit2,'string',num2str(0));
load gnet.mat

[filename,pathname]=uigetfile({'.bmp;.jpg;.png;.jpeg;*.tif'},'选择一个图片','F:\test');
str=[pathname filename];
% 判断文件是否为空,也可以不用这个操作!直接读入图片也可以的
% im = imread(str);
% imshow(im)
if isequal(filename,0)||isequal(pathname,0)
warndlg('please select a picture first!','warning');
return;
else
im = imread(str);
imshow(im);
end
II(:,:,1) = imresize(im(:,:,1),[224,224]);
II(:,:,2) = imresize(im(:,:,2),[224,224]);
II(:,:,3) = imresize(im(:,:,3),[224,224]);
[Predicted_Label, Probability] = classify(net, II);
0Y_028m

```

相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
47 31
|
1天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
8天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
106 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章