m基于Googlenet深度学习的运动项目识别系统matlab仿真,包括GUI界面

简介: **摘要:**在MATLAB 2022a中,基于GoogLeNet的运动识别系统展示优秀性能。GoogLeNet,又称Inception网络,通过结合不同尺寸卷积核的Inception模块实现深度和宽度扩展,有效识别复杂视觉模式。系统流程包括数据预处理、特征提取(前端层学习基础特征,深层学习运动模式)、池化、Dropout及全连接层分类。MATLAB程序示例展示了选择图像、预处理后进行分类的交互过程。当按下按钮,图像被读取、调整大小并输入网络,最终通过classify函数得到预测标签。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法涉及理论知识概要
基于GoogLeNet深度学习的运动项目识别系统,是利用深度神经网络技术,尤其是GoogLeNet架构,来自动识别视频或图像中的人类运动类型的过程。GoogLeNet(也称为Inception网络)在2014年由Google团队提出,因其高效的结构设计和在ImageNet大规模视觉识别挑战赛中的优异表现而闻名。

   GoogLeNet的核心创新之一是Inception模块,它通过在一个模块中组合不同大小的卷积核(例如1x1,3x3,5x5),实现了在不显著增加计算成本的前提下,有效增加网络的深度和宽度。这样的设计能够捕捉多种尺度的特征,对于识别复杂的视觉模式如人类的运动至关重要。

9c905dd092b866e86b407407abe4f2c6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

运动识别流程
数据预处理:首先,收集包含各种运动项目的视频或图像数据,对其进行裁剪、缩放、归一化等预处理操作,使其适配网络的输入要求。

特征提取:利用GoogLeNet的多层结构进行特征提取。网络的前端层学习基本的边缘和纹理特征,而更深的层则逐渐学习更复杂的运动模式和人体姿势特征。

池化和Dropout:网络中包含最大池化层,用于降低空间维度并保持重要的特征,同时加入Dropout层以减少过拟合风险。

全连接层与分类:最后,通过全连接层(FC)将提取的特征映射到运动类别的概率分布,使用Softmax函数进行概率化,公式为:

84ee0dc99e1f4d4e8b4c18416c3eb83f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   基于GoogLeNet的运动识别系统,通过复杂的网络架构和深度学习技术,能够高效地从视频或图像中捕捉和分析人类运动特征,进而识别出具体的运动类型。

3.MATLAB核心程序```% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global im;
global Predicted_Label;
cla (handles.axes1,'reset')

axes(handles.axes1);
set(handles.edit2,'string',num2str(0));
load gnet.mat

[filename,pathname]=uigetfile({'.bmp;.jpg;.png;.jpeg;*.tif'},'选择一个图片','F:\test');
str=[pathname filename];
% 判断文件是否为空,也可以不用这个操作!直接读入图片也可以的
% im = imread(str);
% imshow(im)
if isequal(filename,0)||isequal(pathname,0)
warndlg('please select a picture first!','warning');
return;
else
im = imread(str);
imshow(im);
end
II(:,:,1) = imresize(im(:,:,1),[224,224]);
II(:,:,2) = imresize(im(:,:,2),[224,224]);
II(:,:,3) = imresize(im(:,:,3),[224,224]);
[Predicted_Label, Probability] = classify(net, II);
0Y_028m

```

相关文章
|
1月前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
115 65
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
ModelScope深度学习项目低代码开发
低代码开发平台通过丰富的预训练模型库、高度灵活的预训练模型和强大的微调训练功能,简化深度学习项目开发。以阿里魔搭为例,提供大量预训练模型,支持快速迭代与实时反馈,减少从头训练的时间和资源消耗。开发者可轻松调整模型参数,适应特定任务和数据集,提升模型性能。ModelScope平台进一步增强这些功能,提供模型搜索、体验、管理与部署、丰富的模型和数据资源、多模态任务推理及社区协作,助力高效、环保的AI开发。
202 65
|
10天前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
5天前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
11天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
12天前
|
算法 数据安全/隐私保护
基于GARCH-Copula-CVaR模型的金融系统性风险溢出效应matlab模拟仿真
本程序基于GARCH-Copula-CVaR模型,使用MATLAB2022A仿真金融系统性风险溢出效应。核心功能包括计算违约点、资产价值波动率、信用溢价及其直方图等指标。GARCH模型用于描述资产收益波动性,Copula捕捉依赖结构,CVaR度量极端风险。完整代码无水印输出。 具体步骤:首先通过GARCH模型估计单个资产的波动性,再利用Copula方法构建多资产联合分布,最后应用CVaR评估系统性风险。程序展示了详细的运行结果和图表分析,适用于金融市场风险量化研究。
|
1月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
297 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
174 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
157 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码