数据迁移脚本优化过程:从 MySQL 到 Django 模型表

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群版 2核4GB 100GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用版 2核4GB 50GB
简介: 在大规模的数据迁移过程中,性能问题往往是开发者面临的主要挑战之一。本文将分析一个数据迁移脚本的优化过程,展示如何从 MySQL 数据库迁移数据到 Django 模型表,并探讨优化前后的性能差异。

在大规模的数据迁移过程中,性能问题往往是开发者面临的主要挑战之一。本文将分析一个数据迁移脚本的优化过程,展示如何从 MySQL 数据库迁移数据到 Django 模型表,并探讨优化前后的性能差异。

优化前的脚本分析

优化前的脚本按批次从 MySQL 数据库中读取数据,并将其插入到 Django 模型表中。每次读取的数据量由 batch_size 确定。以下是优化前的关键部分:

fetch_sql = f"""
    SELECT search_rank, search_term,  `period`, report_date 
    FROM hot_search_terms_table 
    WHERE period = '{period}' 
    LIMIT %s OFFSET %s;
"""

每次查询使用 LIMITOFFSET 子句,OFFSET 指定从哪一行开始读取。然而,随着数据量的增加,OFFSET 会导致性能显著下降,因为数据库必须扫描更多行来确定结果集的起点。

优化后的脚本分析

优化后的脚本通过使用递增的主键 ID 进行分页查询,避免了 OFFSET 带来的性能问题。以下是优化后的关键部分:

fetch_sql = f"""
    SELECT id, search_rank, search_term,`period`, report_date 
    FROM hot_search_terms_table 
    WHERE period = %s AND id > %s 
    ORDER BY id ASC 
    LIMIT %s;
"""

通过 WHERE id > %sORDER BY id ASC,我们可以确保每次查询的结果集都是按主键 ID 排序的,性能大大提高,因为数据库可以直接从上一次查询结束的地方开始读取数据。

优化前后的性能比较

优化前的性能问题

  1. 查询性能下降:随着 OFFSET 值的增加,查询性能会显著下降。数据库需要扫描所有的行,直到达到指定的偏移量,然后返回后续的行。
  2. 长时间等待:当数据量较大时,随着偏移量的增加,每次查询所需的时间会变得越来越长。

优化后的性能改进

  1. 高效的分页查询:使用递增的主键 ID 进行分页查询,避免了扫描大量无关行的数据。
  2. 稳定的查询时间:每次查询都只需读取新的数据,无需扫描之前已经处理过的数据行,查询时间稳定且较快。

实施细节

优化前的实现

优化前的实现通过读取偏移量文件来记录上次处理的位置,每次查询都从该位置开始,读取一批数据并插入到 Django 模型表中:

class Command(BaseCommand):
    # 省略部分代码...

    def handle(self, *args, **kwargs):
        try:
            # 连接数据库
            mysql_conn = mysql.connector.connect(**mysql_config)
            mysql_cursor = mysql_conn.cursor()
            # 批次处理
            while True:
                self.stdout.write(self.style.SUCCESS(f"正在获取 {offset} -  {offset + batch_size} 行的数据"))
                zhilin_cursor.execute(fetch_sql, (batch_size, offset))
                batch_data = zhilin_cursor.fetchall()
                if not batch_data:
                    break

                # 转换并插入数据
                objects = [HotSearchTermsReportABA(...) for row in batch_data]
                with transaction.atomic():
                    HotSearchTermsReportABA.objects.bulk_create(objects)
                    offset += batch_size
                    total_rows_transferred += len(batch_data)
                    self.update_last_offset(offset)

        except Error as e:
            # 错误处理
            self.stdout.write(self.style.ERROR(f"传输过程中出现异常:{e}"))

优化后的实现

优化后的实现使用主键 ID 进行分页查询,并记录上次处理的最大 ID:

class Command(BaseCommand):
    # 省略部分代码...

    def handle(self, *args, **kwargs):
        try:
            # 连接数据库
            mysql_conn = mysql.connector.connect(**mysql_config)
            mysql_cursor = mysql_conn.cursor()
            # 批次处理
            while True:
                self.stdout.write(self.style.SUCCESS(f"正在获取 ID 大于 {last_id}{self.batch_size} 行数据"))
                zhilin_cursor.execute(fetch_sql, (period, last_id, self.batch_size))
                batch_data = zhilin_cursor.fetchall()
                if not batch_data:
                    break

                # 转换并插入数据
                objects = [HotSearchTermsReportABA(...) for row in batch_data]
                with transaction.atomic():
                    HotSearchTermsReportABA.objects.bulk_create(objects)
                    last_id = batch_data[-1][0]
                    total_rows_transferred += len(batch_data)
                    self.update_last_id(last_id)

        except Error as e:
            # 错误处理
            self.stdout.write(self.style.ERROR(f"传输过程中出现异常:{e}"))

总结

通过上述优化过程解决了数据量增大导致的查询性能下降问题。具体优化策略包括:

  1. 使用主键 ID 进行分页查询,避免 OFFSET 带来的性能问题。
  2. 确保每次查询只读取新的数据,减少数据库扫描的行数。
相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2天前
|
存储 关系型数据库 MySQL
mysql optimizer_switch : 查询优化器优化策略深入解析
mysql optimizer_switch : 查询优化器优化策略深入解析
|
1天前
|
关系型数据库 MySQL 数据库
『Django』模型入门教程-操作MySQL
一个后台如果没有数据库可以说废了一半。日常开发中大多数时候都在与数据库打交道。Django 为我们提供了一种更简单的操作数据库的方式。 在 Django 中,模型(Model)是用来定义数据库结构的类。每个模型类通常对应数据库中的一个表,类的属性对应表中的列。通过定义模型,Django 的 ORM(Object-Relational Mapping)可以将 Python 对象映射到数据库表,并提供一套 API 来进行数据库操作。 本文介绍模型的用法。
|
2天前
|
关系型数据库 MySQL 数据库
MySQL索引优化:深入理解索引合并
MySQL索引优化:深入理解索引合并
|
1天前
|
SQL 关系型数据库 MySQL
ClickHouse(23)ClickHouse集成Mysql表引擎详细解析
ClickHouse的MySQL引擎允许执行`SELECT`查询从远程MySQL服务器。使用`MySQL('host:port', 'database', 'table', 'user', 'password'[,...])`格式连接,支持简单`WHERE`子句在MySQL端处理,复杂条件和`LIMIT`在ClickHouse端执行。不支持`NULL`值,用默认值替换。系列文章涵盖ClickHouse安装、集群搭建、表引擎解析等主题。[链接](https://zhangfeidezhu.com/?p=468)有更多
8 0
|
2天前
|
存储 关系型数据库 MySQL
技术笔记:MySQL数据库优化详解(收藏)
技术笔记:MySQL数据库优化详解(收藏)
|
2天前
|
缓存 关系型数据库 MySQL
欢迎来到MySQL优化之旅
欢迎来到MySQL优化之旅
6 0
|
3天前
|
存储 关系型数据库 MySQL
|
2天前
|
存储 关系型数据库 MySQL