激活函数:神经网络的生命之花

简介: 激活函数:神经网络的生命之花

1. 什么是激活函数?

激活函数是神经网络中的一种数学运算,它决定了神经元输出的形式。在深度学习中,神经网络通过激活函数引入非线性因素,使其能够学习和逼近更为复杂的函数关系。

2. 为什么需要激活函数?

a. 引入非线性

激活函数引入非线性是其最主要的作用之一。如果神经网络中没有激活函数,无论多少层的网络都等价于单层线性网络,无法应对复杂的非线性问题。

b. 学习复杂模式

非线性激活函数使得神经网络能够学习和表示更为复杂的模式和特征,提高了模型的表达能力。

c. 解决分类问题

激活函数在分类问题中发挥重要作用,通过激活函数的输出,我们可以得到对应于不同类别的概率分布。

3. 常见的激活函数

a. Sigmoid函数

Sigmoid函数是一种常见的激活函数,其输出范围在0到1之间,常用于二分类问题。


image.png

b. Tanh函数

Tanh函数是Sigmoid函数的变体,其输出范围在-1到1之间,解决了Sigmoid函数输出偏向0和1的问题。


image.png

c. ReLU函数

ReLU(Rectified Linear Unit)函数是一种常用的非线性激活函数,简单而有效。当输入大于0时,输出等于输入;当输入小于等于0时,输出为0。


image.png

d. Leaky ReLU函数

Leaky ReLU是对ReLU的改进,解决了ReLU在输入小于等于0时导致的神经元“死亡”问题。


image.png

4. 如何选择激活函数?

a. 任务类型

根据任务类型选择激活函数。例如,对于二分类问题,Sigmoid函数通常是个不错的选择;对于多分类问题,Softmax函数常被用作输出层的激活函数。

b. 梯度消失问题

梯度消失是指在反向传播过程中,梯度越来越小,导致模型无法更新。选择不容易导致梯度消失的激活函数是一种解决办法。

c. 计算复杂度

有些激活函数的计算复杂度较高,可能会增加训练时间。在选择激活函数时需要考虑计算效率。

5. 实战案例:搭建神经网络

让我们通过一个简单的案例来演示如何在神经网络中使用激活函数。

import tensorflow as tf
# 定义模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_shape=(input_size,)),
    tf.keras.layers.Dense(10, activation='softmax')
])

上述代码中,我们使用了ReLU激活函数作为隐藏层的激活函数,使用Softmax激活函数作为输出层的激活函数。

6. 总结

激活函数作为神经网络的一部分,扮演着至关重要的角色。通过选择合适的激活函数,我们可以使神经网络更好地适应不同类型的任务。希望通过这篇文章,你对激活函数的作用和选择有了更清晰的认识。

相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
2月前
|
机器学习/深度学习 编解码
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
本文介绍了九种常用的神经网络激活函数:Sigmoid、tanh、ReLU、ReLU6、Leaky ReLU、ELU、Swish、Mish和Softmax,包括它们的定义、图像、优缺点以及在深度学习中的应用和代码实现。
199 0
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
|
2月前
|
机器学习/深度学习 数据可视化 算法
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
|
4月前
|
机器学习/深度学习 算法
神经网络中激活函数的重要性
【8月更文挑战第23天】
63 0
|
4月前
|
机器学习/深度学习 Shell 计算机视觉
一文搞懂 卷积神经网络 卷积算子应用举例 池化 激活函数
这篇文章通过案例详细解释了卷积神经网络中的卷积算子应用、池化操作和激活函数,包括如何使用卷积算子进行边缘检测和图像模糊,以及ReLU激活函数如何解决梯度消失问题。
|
5月前
|
机器学习/深度学习
神经网络可能不再需要激活函数?Layer Normalization也具有非线性表达!
【7月更文挑战第14天】研究表明,层归一化(LayerNorm)可能具备非线性表达能力,挑战了神经网络对激活函数的依赖。在LN-Net结构中,仅使用线性层与LayerNorm就能实现复杂分类,其VC维度下界证明了非线性表达。尽管如此,是否能完全替代激活函数及如何有效利用这一特性仍需更多研究。[arXiv:2406.01255]
68 5
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ>0增强集成效果,提高预测准确性和系统稳健性。
|
5月前
|
存储 Java Unix
(八)Java网络编程之IO模型篇-内核Select、Poll、Epoll多路复用函数源码深度历险!
select/poll、epoll这些词汇相信诸位都不陌生,因为在Redis/Nginx/Netty等一些高性能技术栈的底层原理中,大家应该都见过它们的身影,接下来重点讲解这块内容。
|
6月前
|
机器学习/深度学习 算法 Serverless
神经网络的激活函数(二)
本文介绍了神经网络中的激活函数,特别是tanh和ReLU。tanh函数将输入映射到(-1,1),以0为中心,加快了训练速度,但两侧导数为0可能导致梯度消失。ReLU函数在正区间的导数为1,解决了梯度消失问题,常用于隐藏层。softmax函数用于多分类,将输出转换为概率分布。文章还包含了代码示例,展示了这些函数的图形和导数。
|
9天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
47 17