清华等高校推出首个开源大模型水印工具包MarkLLM,支持近10种最新水印算法

简介: 【6月更文挑战第27天】清华大学等高校发布了开源工具MarkLLM,这是首个专注于大语言模型水印的工具包,支持近10种先进算法。该工具统一了水印实现,便于比较和使用,旨在促进水印技术在保障信息真实性和网络安全上的应用。MarkLLM提供直观界面、可视化及自动化评估,推动了大模型水印研究的进步。[论文链接:](https://arxiv.org/abs/2405.10051)**

近日,清华大学等高校联合推出了一款名为MarkLLM的开源工具包,旨在解决大语言模型(LLM)水印技术在研究和应用中面临的诸多挑战。这一工具包的发布引起了广泛关注,被认为是大语言模型水印技术领域的一项重要进展。

大语言模型水印技术是一种用于识别和追踪大语言模型生成文本的新型技术。随着大语言模型的广泛应用,其生成的文本在网络上随处可见,但这些文本的真实来源却难以追溯,这为不法分子利用大语言模型进行欺诈、虚假信息传播等恶意活动提供了可乘之机。因此,为了维护网络安全和信息真实性,研究人员提出了大语言模型水印技术,通过在模型输出中嵌入难以察觉但可被算法检测的信号,实现对大语言模型生成文本的识别和追踪。

然而,大语言模型水印技术的发展也面临着一些挑战。首先,目前已经提出了多种不同的水印算法,但这些算法的实现和评估过程相对复杂,缺乏统一的标准和工具,导致研究人员难以进行有效的比较和选择。其次,水印技术的原理和机制相对复杂,一般研究者可能难以理解和应用。最后,水印技术的效果和安全性也需要进行全面的评估和验证,以确保其在实际应用中的可靠性和有效性。

为了解决这些问题,清华大学等高校的研究人员开发了MarkLLM工具包。该工具包提供了一个统一、可扩展的框架,用于实现和评估各种大语言模型水印算法。它支持近10种最新的水印算法,包括基于模型参数的水印算法、基于模型行为的水印算法等,并提供了用户友好的界面,使研究人员可以方便地进行实验和比较。

MarkLLM工具包还提供了丰富的可视化功能,帮助研究人员更好地理解水印算法的原理和机制。通过自动生成的可视化图表和模型结构图,研究人员可以直观地看到水印信号是如何嵌入到模型输出中的,以及不同算法之间的差异和优缺点。

此外,MarkLLM工具包还提供了全面的评估工具和自动化的评估流程,用于评估水印算法的效果和安全性。这些评估工具涵盖了多个不同的方面,包括水印的鲁棒性、不可感知性、可检测性等,并支持自动化的评估流程,使研究人员可以方便地进行大规模、高效率的评估实验。

论⽂链接:https://arxiv.org/abs/2405.10051

目录
相关文章
|
4月前
|
人工智能 自然语言处理 算法
首届大模型顶会COLM 高分论文:偏好搜索算法PairS,让大模型进行文本评估更高效
【8月更文挑战第26天】在人工智能领域,尽管大型语言模型(LLMs)作为自动评估工具展现了巨大潜力,但在自然语言生成质量评估中仍存偏见问题,且难以确保一致性。为解决这一挑战,研究者开发了Pairwise-preference Search(PairS)算法,一种基于不确定性的搜索方法,通过成对比较及不确定性引导实现高效文本排名,有效减少了偏见、提升了评估效率和可解释性。PairS在多项任务中表现出色,相较于传统评分法有显著提升,为自然语言处理评估提供了新思路。更多详情参阅论文:https://arxiv.org/abs/2403.16950。
82 4
|
20天前
|
存储 人工智能 自然语言处理
Delta-CoMe:清华联合OpenBMB等高校开源的新型增量压缩算法
Delta-CoMe是由清华大学NLP实验室联合OpenBMB开源社区、北京大学和上海财经大学提出的新型增量压缩算法。该算法通过结合低秩分解和低比特量化技术,显著减少了大型语言模型的存储和内存需求,同时保持了模型性能几乎无损。Delta-CoMe特别适用于处理数学、代码和多模态等复杂任务,并在推理速度上有所提升。
55 6
Delta-CoMe:清华联合OpenBMB等高校开源的新型增量压缩算法
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
让非算法同学也能了解 ChatGPT 等相关大模型
让非算法同学也能了解 ChatGPT 等相关大模型
让非算法同学也能了解 ChatGPT 等相关大模型
|
4月前
|
算法 数据处理 数据安全/隐私保护
|
5月前
|
人工智能 算法
从RLHF到DPO再到TDPO,大模型对齐算法已经是token-level
【7月更文挑战第1天】在AI领域的语言模型对齐研究中,新提出的TDPO算法实现了Token-level的直接优化。不同于以往在答案级别评估的方法,TDPO利用前向KL散度和Bradley-Terry模型,直接在生成过程的Token层面上调整对齐,提高微调精度和多样性。实验显示,TDPO优于DPO和RLHF,在某些任务上表现出色,但也面临计算资源需求高、处理复杂任务时局限性等问题,需要进一步验证和改进。[论文链接](https://arxiv.org/abs/2404.11999)
145 8
|
6月前
|
数据采集 算法 安全
CVPR 2024:给NeRF开透视眼!稀疏视角下用X光进行三维重建,9类算法工具包全开源
【6月更文挑战第28天】CVPR 2024亮点:SAX-NeRF框架开源!融合X光与NeRF,提升3D重建效果。X3D数据集验证,Lineformer+MLG策略揭示物体内部结构,增强几何理解。虽有计算成本及泛化挑战,但为计算机视觉和医学影像开辟新路径。[论文链接](https://arxiv.org/abs/2311.10959)**
194 5
|
5月前
|
机器学习/深度学习 算法 搜索推荐
一个开源且全面的C#算法实战教程
一个开源且全面的C#算法实战教程
102 0
|
18天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
4天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。