技术心得:判别式模型vs.生成式模型

简介: 技术心得:判别式模型vs.生成式模型

"

1. 简介

生成式模型(generative model)会对xxx和yyy的联合分布p(x,y)p(x,y)p(x,y)进行建模,然后通过贝叶斯公式来求得p(y|x)p(y|x)p(y|x), 最后选取使得p(y|x)p(y|x)p(y|x)最大的yiyiy_i. //代码效果参考:https://v.youku.com/v_show/id_XNjQwNjYyODc4NA==.html

具体地, y?=argmaxyip(yi|x)=argmaxyip(x|yi)p(yi)p(x)=argmaxyip(x|yi)p(yi)=argmaxyip(x,yi)y?=argmaxyip(yi|x)=argmaxyip(x|yi)p(yi)p(x)=argmaxyip(x|yi)p(yi)=argmaxyip(x,yi)y{*}=arg \max{y_i}p(yi|x)=arg \max{y_i}\frac{p(x|y_i)p(yi)}{p(x)}=arg \max{y_i}p(x|y_i)p(yi)=arg \max{y_i}p(x,y_i).//代码效果参考:https://v.youku.com/v_show/id_XNjQwMDE5ODQ3Ng==.html

判别式模型(discriminative model)则会直接对"
image.png

相关文章
|
7月前
|
机器学习/深度学习 人工智能 计算机视觉
多模态模型可能是大模型的终局
多模态模型可能是大模型的终局
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能基础——模型部分:模型介绍、模型训练和模型微调 !!
人工智能基础——模型部分:模型介绍、模型训练和模型微调 !!
293 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习之稳健的模型推理与不确定性建模
基于深度学习的稳健模型推理与不确定性建模,是现代AI系统中至关重要的研究方向。随着深度学习在各类应用中的成功,如何保证模型在面对未知或不确定性输入时仍能做出稳健的推理,并能够量化这种不确定性,成为关键问题。稳健性与不确定性建模可以提高模型的安全性、可靠性,尤其在自动驾驶、医疗诊断等高风险领域。
56 0
|
4月前
|
机器学习/深度学习 程序员 数据处理
2.1 横纵式 学习法完整掌握深度学习模型的建模
这篇文章介绍了使用飞桨框架完成手写数字识别任务的流程,强调了飞桨框架在不同模型间的代码一致性优势,并采用了“横纵式”教学法,通过逐步增加深度和复杂性来帮助初学者全面掌握深度学习模型的构建过程。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的正则化技术:提升模型泛化能力的关键策略探索AI的奥秘:深度学习与神经网络
【8月更文挑战第27天】在深度学习的探索旅程中,我们常常遭遇模型过拟合的困境,就像是一位探险者在茫茫林海中迷失方向。本文将作为你的指南针,指引你理解并应用正则化技术,这一强大的工具能够帮助我们的模型更好地泛化于未见数据,就如同在未知领域中找到正确的路径。我们将从简单的L1和L2正则化出发,逐步深入到更为复杂的丢弃(Dropout)和数据增强等策略,为你的深度学习之旅提供坚实的支持。
|
7月前
|
机器学习/深度学习 数据处理
【机器学习】生成式模型与判别式模型有什么区别?
【5月更文挑战第10天】【机器学习】生成式模型与判别式模型有什么区别?
|
7月前
|
机器学习/深度学习 人工智能 数据挖掘
【AI 生成式】半监督学习和自监督学习的概念
【5月更文挑战第4天】【AI 生成式】半监督学习和自监督学习的概念
|
人工智能 算法 数据可视化
LeCun世界模型首项研究来了:自监督视觉,像人一样学习和推理,已开源
LeCun世界模型首项研究来了:自监督视觉,像人一样学习和推理,已开源
223 0
|
机器学习/深度学习 数据采集 编解码
深度学习如何训练出好的模型
深度学习如何训练出好的模型
|
人工智能 编解码 自然语言处理
一句话生成3D模型:AI扩散模型的突破,让建模师慌了
一句话生成3D模型:AI扩散模型的突破,让建模师慌了
842 0
下一篇
DataWorks