大模型训练的艺术:从预训练到增强学习的四阶段之旅

简介: 大模型训练的艺术:从预训练到增强学习的四阶段之旅

大模型训练的艺术:从预训练到增强学习的四阶段之旅

在当今人工智能领域,大型模型以其卓越的性能和广泛的应用前景,成为推动技术进步的重要力量。训练这样复杂的模型并非一日之功,而是需历经精心设计的四个阶段:预训练、监督微调(SFT)、奖励模型训练、以及增强学习微调(RL)。本文将深入探索这四大阶段,揭示每一步骤背后的技术逻辑和实施细节。

1. 预训练阶段(Pretraining)

核心目标: 构建一个对广泛数据具有普遍理解的基础模型。预训练阶段通过让模型在大规模未标注数据集上学习,来捕获语言、图像或其他类型数据的统计规律和潜在结构。这一步骤通常使用自监督学习策略,如掩码语言模型(如BERT)或对比学习(如SimCLR)。

实施细节: 模型会尝试预测被遮盖的部分或在图像中找出相似性,从而在无监督环境下学习数据的内在特征。此阶段需要大量计算资源,并且模型规模往往非常庞大,以便能更好地泛化至各种任务。

应用场景: 预训练模型如BERT、RoBERTa在自然语言处理领域被广泛应用,为后续的微调和具体任务适应奠定了坚实的基础。

2. 监督微调阶段(Supervised Finetuning, SFT)

核心目标: 将预训练得到的通用模型适应特定任务。通过在特定领域的带标签数据集上进行微调,模型学习特定任务的输出模式,比如情感分析、命名实体识别或图像分类。

实施细节: 在预训练模型的基础上,添加额外的输出层并使用监督学习策略,调整模型参数以最小化预测错误。这一阶段的训练数据相对较少,但针对性极强,使模型在特定任务上表现更佳。

应用场景: 例如,针对医疗记录的情感分析,会在预训练的语言模型基础上,使用标注了情感的医疗文本进行微调。

3. 奖励模型训练阶段(Reward Modeling)

核心目标: 为模型的行为制定评价标准。在某些复杂或开放式的任务中,简单的正确/错误标签不足以指导模型学习。奖励模型通过给模型的输出分配分数(奖励),引导其产生更高质量的输出。

实施细节: 通过人工或自动化方法,为模型的不同行为或生成内容分配奖励分数,建立奖励模型。这要求设计合理的奖励函数,确保模型追求的目标与实际任务目标一致。

应用场景: 在生成对话系统中,奖励模型可以用来评价对话的连贯性、信息丰富度和用户满意度,促使模型产生更加自然和有用的回复。

4. 增强学习微调阶段(Reinforcement Learning, RL)

核心目标: 通过与环境的互动,优化模型的决策策略。增强学习阶段利用奖励信号,使模型在特定环境中通过试错学习,不断优化其行为策略,以最大化长期奖励。

实施细节: 模型在环境中采取行动,根据奖励模型给出的反馈调整策略。这通常涉及策略梯度方法等技术,模型通过多次迭代逐渐学会如何做出最优选择。

应用场景: 在游戏AI、自动机器人导航等场景,增强学习能让模型在动态环境中自主学习最佳策略,实现高效解决问题的能力。

结语

这四个阶段构成了一个系统化的训练流程,从广泛而基础的预训练,到针对任务的精炼微调,再到高级的策略优化,每一步都是为了让模型更加智能、高效地服务于特定应用场景。随着技术的不断演进,这一流程也在持续优化,推动着大模型向更广泛、更深层次的应用领域迈进。

相关文章
|
1月前
|
机器学习/深度学习 算法
【机器学习】迅速了解什么是集成学习
【机器学习】迅速了解什么是集成学习
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习、深度学习、强化学习和迁移学习简介、相互对比、区别与联系。
机器学习、深度学习、强化学习和迁移学习都是人工智能领域的子领域,它们之间有一定的联系和区别。下面分别对这四个概念进行解析,并给出相互对比、区别与联系以及应用场景案例分析。
87 1
|
3月前
|
机器学习/深度学习 开发者 Python
Python 与 R 在机器学习入门中的学习曲线差异
【8月更文第6天】在机器学习领域,Python 和 R 是两种非常流行的编程语言。Python 以其简洁的语法和广泛的社区支持著称,而 R 则以其强大的统计功能和数据分析能力受到青睐。本文将探讨这两种语言在机器学习入门阶段的学习曲线差异,并通过构建一个简单的线性回归模型来比较它们的体验。
66 7
|
3月前
|
机器学习/深度学习 运维 算法
【阿里天池-医学影像报告异常检测】3 机器学习模型训练及集成学习Baseline开源
本文介绍了一个基于XGBoost、LightGBM和逻辑回归的集成学习模型,用于医学影像报告异常检测任务,并公开了达到0.83+准确率的基线代码。
65 9
|
3月前
|
机器学习/深度学习
【机器学习】模型融合Ensemble和集成学习Stacking的实现
文章介绍了使用mlxtend和lightgbm库中的分类器,如EnsembleVoteClassifier和StackingClassifier,以及sklearn库中的SVC、KNeighborsClassifier等进行模型集成的方法。
54 1
|
3月前
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
125 0
|
4月前
|
机器学习/深度学习 算法 前端开发
集成学习(Ensemble Learning)是一种机器学习技术,它通过将多个学习器(或称为“基学习器”、“弱学习器”)的预测结果结合起来,以提高整体预测性能。
集成学习(Ensemble Learning)是一种机器学习技术,它通过将多个学习器(或称为“基学习器”、“弱学习器”)的预测结果结合起来,以提高整体预测性能。
|
4月前
|
机器学习/深度学习 人工智能 缓存
人工智能平台PAI使用问题之如何配置学习任务
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
5月前
|
机器学习/深度学习 算法 前端开发
机器学习中的集成学习(二)
**集成学习概述** 集成学习通过结合多个弱学习器创建强学习器,如Bagging(Bootstrap Aggregating)和Boosting。Bagging通过随机采样产生训练集,训练多个弱模型,然后平均(回归)或投票(分类)得出结果,减少方差和过拟合。Boosting则是迭代过程,每个弱学习器专注于难分类样本,逐步调整样本权重,形成加权平均的强学习器。典型算法有AdaBoost、GBDT、XGBoost等。两者区别在于,Bagging模型并行训练且独立,而Boosting模型间有依赖,重视错误分类。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习中的集成学习(一)
集成学习是一种将多个弱学习器组合成强学习器的方法,通过投票法、平均法或加权平均等策略减少错误率。它分为弱分类器集成、模型融合和混合专家模型三个研究领域。简单集成技术包括投票法(用于分类,少数服从多数)、平均法(回归问题,预测值取平均)和加权平均法(调整模型权重以优化结果)。在实际应用中,集成学习如Bagging和Boosting是与深度学习并驾齐驱的重要算法,常用于数据竞赛和工业标准。