1.什么是时间复杂度和空间复杂度
1.1 算法效率
算法效率分析分为两种:第一种是时间效率,第二种是空间效率。 时间效率被称为时间复杂度,
而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主
要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间
复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。
所以我们如今已经不需要再特别关注一个算法的空间复杂度。
1.2时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运
行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机
器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻
烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比
例,算法中的基本操作的执行次数,为算法的时间复杂度
1.3 空间复杂度的概念
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用
了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用大O渐进表示法。
2.时间复杂度和空间复杂度的计算
2.1 时间复杂度的计算
** 大O渐进表示法 **
// 请计算一下Func1基本操作执行了多少次? void Func1(int N) { int count = 0; for (int i = 0; i < N ; ++ i) { for (int j = 0; j < N ; ++ j) { ++count; } } for (int k = 0; k < 2 * N ; ++ k) { ++count; } int M = 10; while (M--) { ++count; } printf("%d\n", count); }
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次
数,那么这里我们使用大O的渐进表示法。
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数。
- 在修改后的运行次数函数中,只保留最高阶项。
- 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
2.2 空间复杂度的计算
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用
了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用大O渐进表示法。
// 计算BubbleSort的空间复杂度? void BubbleSort(int* a, int n) { assert(a); for (size_t end = n; end > 0; --end) { int exchange = 0; for (size_t i = 1; i < end; ++i) { if (a[i-1] > a[i]) { Swap(&a[i-1], &a[i]); exchange = 1; } } if (exchange == 0) break; }