【完全复现】基于改进粒子群算法的微电网多目标优化调度

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 该文档描述了一个使用改进粒子群算法实现的微电网多目标优化调度的Matlab程序。该模型旨在最小化运行成本和环境保护成本,将多目标问题通过权值转换为单目标问题解决。程序中定义了决策变量,如柴油发电机、微型燃气轮机、联络线和储能的输出,并使用全局变量处理电负荷、风力和光伏功率等数据。算法参数包括最大迭代次数和种群大小。代码调用了`PSOFUN`函数来执行优化计算,并展示了优化结果的图表。

 主要内容  

程序完全复现文献模型《基于改进粒子群算法的微电网多目标优化调度》,以微电网系统运行成本和环境保护成本为目标函数,建立了并网方式下的微网多目标优化调度模型,通过改进粒子群算法和原始粒子群算法进行对比,验证改进方法的优越性。虽然标题是多目标优化算法,实质指的是权值多目标,即通过不同目标权值相加的方式转化为单目标进行求解,程序采用matlab编写,模块化编程,方便学习!


 部分代码  

%% 基于改进粒子群算法的微电网多目标优化调度  

% 变量定义如下:


% 决策变量:柴油发电机 微型燃气轮机 联络线 储能

% x=[DE(1*24), MT(1*24), Grid(1*24), Bess(1*24)];


clc;

clear;

close all;

tic

%获取数据

%定义全局变量

global P_load; %电负荷

global Pwt;%风电

global Ppv;%光伏

global buy_price;

global sell_price;

global f1;

global f2;

data=xlsread('mopso_data');

P_load=data(:,1);

Ppv=data(:,2);

Pwt=data(:,3);

buy_price=data(:,4);

sell_price=data(:,5);

%% 算法参数

parameter;%基本参数


nVar=4*24;              % 变量数量

VarMin=[ones(1,24)*DEMin, ones(1,24)*MTMin, ...

                ones(1,24)*GridMin, ones(1,24)*BESSMax_char]; % 变量最小值

VarMax=[ones(1,24)*DEMax, ones(1,24)*MTMax, ...

                ones(1,24)*GridMax, ones(1,24)*BESSMax_dischar]; % 变量上限

MaxIt=500;      % Maximum Number of Iterations

nPop=200;        % Population Size (Swarm Size)


%% 计算


[ bestPosition, fitValue, BestCost ] = ...

PSOFUN( @fun_objective,nVar,VarMin,VarMax,MaxIt,nPop );



 结果一览  


 

相关文章
|
4天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
102 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
206 80
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
25天前
|
算法 安全 Java
Java线程调度揭秘:从算法到策略,让你面试稳赢!
在社招面试中,关于线程调度和同步的相关问题常常让人感到棘手。今天,我们将深入解析Java中的线程调度算法、调度策略,探讨线程调度器、时间分片的工作原理,并带你了解常见的线程同步方法。让我们一起破解这些面试难题,提升你的Java并发编程技能!
65 16
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
266 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。