C++一分钟之-互斥锁与条件变量

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 【6月更文挑战第26天】在C++并发编程中,`std::mutex`提供互斥访问,防止数据竞争,而`std::condition_variable`用于线程间的同步协调。通过`lock_guard`和`unique_lock`防止忘记解锁,避免死锁。条件变量需配合锁使用,确保在正确条件下唤醒线程,注意虚假唤醒和无条件通知。生产者-消费者模型展示了它们的应用。正确使用这些工具能解决同步问题,提升并发性能和可靠性。

在C++并发编程中,同步机制是保证数据一致性与线程安全的重要工具。std::mutex(互斥锁)提供了基本的互斥访问保护,而std::condition_variable(条件变量)则用于线程间的精确协调,让线程在满足特定条件时才继续执行。本文将深入浅出地讲解这两者的使用、常见问题、易错点以及如何避免这些问题,并通过实例代码加深理解。
image.png

一、互斥锁(std::mutex)

互斥锁是实现线程间资源独占访问的基础手段。一旦一个线程获得了锁,其他试图获取同一锁的线程将会被阻塞,直到锁被释放。

基本用法

std::mutex mtx;
// 加锁
mtx.lock();
// 执行临界区代码
// ...
// 解锁
mtx.unlock();

易错点与避免策略

  1. 忘记解锁:使用std::lock_guardstd::unique_lock自动管理锁的生命周期,确保即使发生异常也能解锁。
  2. 死锁:避免在持有锁的情况下调用可能阻塞的函数,或按相同的顺序获取多个锁。

二、条件变量(std::condition_variable)

条件变量用于线程间同步,允许一个线程等待(挂起)直到另一个线程通知某个条件为真。

基本用法

std::condition_variable cv;
std::mutex mtx;

void waitingFunction() {
   
   
    std::unique_lock<std::mutex> lock(mtx);
    cv.wait(lock, []{
   
   return conditionToWaitFor;}); // 条件满足前挂起
    // 条件满足后执行的代码
}

void notifyingFunction() {
   
   
    // 修改状态使得conditionToWaitFor为真
    std::lock_guard<std::mutex> lock(mtx);
    cv.notify_one(); // 唤醒一个等待的线程
}

常见问题与避免策略

  1. 无条件唤醒:不要在没有改变条件的情况下调用notify_*函数,这可能导致不必要的线程唤醒和重新检查条件。
  2. 虚假唤醒:即使没有调用notify_*,等待的线程也可能被唤醒。因此,总是使用条件来检查是否真正满足继续执行的条件。
  3. 死锁:确保在调用wait之前已经获得了锁,并且在wait之后立即检查条件,避免在持有锁的情况下执行耗时操作。

三、综合示例:生产者-消费者模型

#include <iostream>
#include <thread>
#include <queue>
#include <mutex>
#include <condition_variable>

std::queue<int> producedItems;
std::mutex mtx;
std::condition_variable condVar;

bool doneProducing = false;

void producer(int n) {
   
   
    for (int i = 0; i < n; ++i) {
   
   
        std::this_thread::sleep_for(std::chrono::seconds(1)); // 模拟生产时间
        std::lock_guard<std::mutex> lock(mtx);
        producedItems.push(i);
        condVar.notify_one(); // 通知消费者
        if (i == n - 1) doneProducing = true;
    }
}

void consumer() {
   
   
    while (true) {
   
   
        std::unique_lock<std::mutex> lock(mtx);
        condVar.wait(lock, []{
   
   return !producedItems.empty() || doneProducing;});
        if (!producedItems.empty()) {
   
   
            int item = producedItems.front();
            producedItems.pop();
            std::cout << "Consumed: " << item << std::endl;
        } else if (doneProducing) {
   
   
            break;
        }
    }
}

int main() {
   
   
    std::thread producerThread(producer, 10);
    std::thread consumerThread(consumer);

    producerThread.join();
    consumerThread.join();

    return 0;
}

四、总结

互斥锁和条件变量是构建复杂并发系统不可或缺的组件。正确使用它们,可以有效解决线程间的同步问题,避免数据竞争和死锁。实践中,应注重细节,如使用RAII模式管理锁的生命周期、仔细设计条件判断逻辑,以及避免无意义的线程唤醒。通过上述示例和策略的学习,希望你能更加自信地在C++项目中应用这些并发工具,提升程序的并发性能和可靠性。随着经验的积累,逐步探索更高级的并发模式和库,如C++20中的std::latchstd::barrier,将使你的并发编程技能更加全面和高效。

目录
相关文章
|
28天前
|
存储 安全 C++
C++:指针引用普通变量适用场景
指针和引用都是C++提供的强大工具,它们在不同的场景下发挥着不可或缺的作用。了解两者的特点及适用场景,可以帮助开发者编写出更加高效、可读性更强的代码。在实际开发中,合理选择使用指针或引用是提高编程技巧的关键。
23 1
|
7天前
|
JavaScript 前端开发 Java
通过Gtest访问C++静态、私有、保护变量和方法
通过Gtest访问C++静态、私有、保护变量和方法
8 0
|
2月前
|
C++ 运维
开发与运维编译问题之在C++中在使用std::mutex后能自动释放锁如何解决
开发与运维编译问题之在C++中在使用std::mutex后能自动释放锁如何解决
46 2
|
3月前
|
程序员 编译器 C++
探索C++语言宝库:解锁基础知识与实用技能(类型变量+条件循环+函数模块+OOP+异常处理)
探索C++语言宝库:解锁基础知识与实用技能(类型变量+条件循环+函数模块+OOP+异常处理)
33 0
|
3月前
|
C++
C++之变量与常量
C++之变量与常量
|
2天前
|
编译器 C++
C++ 类构造函数初始化列表
构造函数初始化列表以一个冒号开始,接着是以逗号分隔的数据成员列表,每个数据成员后面跟一个放在括号中的初始化式。
42 30
|
16天前
|
存储 编译器 C++
C ++初阶:类和对象(中)
C ++初阶:类和对象(中)
|
1月前
|
存储 安全 编译器
【C++】类和对象(下)
【C++】类和对象(下)
【C++】类和对象(下)
|
16天前
|
C++
C++(十六)类之间转化
在C++中,类之间的转换可以通过转换构造函数和操作符函数实现。转换构造函数是一种单参数构造函数,用于将其他类型转换为本类类型。为了防止不必要的隐式转换,可以使用`explicit`关键字来禁止这种自动转换。此外,还可以通过定义`operator`函数来进行类型转换,该函数无参数且无返回值。下面展示了如何使用这两种方式实现自定义类型的相互转换,并通过示例代码说明了`explicit`关键字的作用。
|
16天前
|
存储 设计模式 编译器
C++(十三) 类的扩展
本文详细介绍了C++中类的各种扩展特性,包括类成员存储、`sizeof`操作符的应用、类成员函数的存储方式及其背后的`this`指针机制。此外,还探讨了`const`修饰符在成员变量和函数中的作用,以及如何通过`static`关键字实现类中的资源共享。文章还介绍了单例模式的设计思路,并讨论了指向类成员(数据成员和函数成员)的指针的使用方法。最后,还讲解了指向静态成员的指针的相关概念和应用示例。通过这些内容,帮助读者更好地理解和掌握C++面向对象编程的核心概念和技术细节。